Klebstoffe aus Federn

© Fraunhofer IGBFedern enthalten Keratin, ein wasserunlösliches Strukturprotein, aus dem sich Bestandteile von Klebstoffen herstellen lassen.

© Fraunhofer IGB Federn enthalten Keratin, ein wasserunlösliches Strukturprotein, aus dem sich Bestandteile von Klebstoffen herstellen lassen.

Klebstoffe beruhen fast immer auf fossilen Rohstoffen wie Erdöl. Fraunhofer-Forschende haben nun ein Verfahren entwickelt, mit dem der biobasierte Rohstoff Keratin erschlossen wird. Die leistungsfähige Protein-Verbindung ist beispielsweise in Hühnerfedern enthalten. Damit kann man nicht nur eine Vielzahl unterschiedlicher Klebstoffe für verschiedene Anwendungsbereiche herstellen. Die Verfahren und Endprodukte sind vielmehr nachhaltig und orientieren sich am Grundprinzip einer bioinspirierten Kreislaufwirtschaft. Das gemeinsame Projekt mit der Henkel AG & Co. KGaA adressiert einen Milliardenmarkt. Weiterlesen

Digitaler Zwilling beschleunigt Solarforschung

Solarflächen der Zukunft: flexibel, durchsichtig und mit immenser Einsatzvielfalt. (Bild: FAU/DALL-E/runwayml)

Solarflächen der Zukunft: flexibel, durchsichtig und mit immenser Einsatzvielfalt. (Bild: FAU/DALL-E/runwayml)

Künstliche Intelligenz soll die Suche nach dem perfekten Material für Solarmodule um den Faktor zehn beschleunigen. Daran arbeitet ein interdisziplinäres Team der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Die Forschenden aus der Materialwissenschaft, dem Ingenieurwesen, der Chemie und der Informatik wollen einen digitalen Zwilling implementieren, der Materialkombinationen besser charakterisiert und Hochdurchsatzexperimente schneller zum Erfolg führt. Weiterlesen

Rückgewinnen statt schreddern: Batterien effizienter recyceln

Im Projekt DiRecReg entwickeln vier Institute des KIT und sieben Unternehmen eine vollständige Prozesskette, um gebrauchte Batterien und Ausschuss besser zu verwerten. (Foto: wbk, KIT)

Im Projekt DiRecReg entwickeln vier Institute des KIT und sieben Unternehmen eine vollständige Prozesskette, um gebrauchte Batterien und Ausschuss besser zu verwerten. (Foto: wbk, KIT)

Der Markt für E-Autos wächst rapide und damit der Bedarf an Lithium-Ionen-Batterien (LIB). Auch deren Recycling ist ein wichtiger Baustein im Produktionskreislauf. Aktuelle Verfahren zerlegen die aktiven Batteriematerialien in ihre molekularen Bestandteile – unter hohem Energie- und Chemikalieneinsatz. In einem groß angelegten Verbundprojekt entwickeln daher Forschende des Karlsruher Instituts für Technologie (KIT) und Partner aus Industrieunternehmen eine vollständige Prozesskette, um gebrauchte Batterien effizienter zu verwerten, in dem sie die aktiven Komponenten funktionserhaltend zurückgewinnen. Das Bundesforschungsministerium fördert das Projekt mit knapp drei Millionen Euro. Weiterlesen

Neuer Energiespeicher vereint Batterie und Elektrolyseur – Werkzeug für die Energiewende

Ein Forschungskonsortium mit Beteiligung der TU Berlin arbeitet an einer neuartigen Zink-Wasserstoff-Batterie, die Strom mit einem hohen Wirkungsgrad speichern kann und beim Entladen nicht nur elektrische Energie, sondern auch Wasserstoff freisetzt. Dies gelingt, indem die negative Zink-Elektrode der Batterie mit dem Prinzip der alkalischen Wasser-Elektrolyse kombiniert wird. Als positive Gegenelektrode kommt dabei eine spezielle Wasserstoff/Sauerstoff-Gaselektrode zum Einsatz, die als Elektrokatalysator dient. Erste Tests des neuen Energiespeichers ergaben einen Wirkungsgrad von 50 Prozent bei der Stromspeicherung und 80 Prozent bei der Wasserstofferzeugung, bei einer prognostizierten Lebensdauer von zehn Jahren.

 Das Zink-Wasserstoff Speichersystem kann zu einem Zehntel der Kosten von Lithium-Batterien produziert werden und speist bedarfsgerecht Wasserstoff in den Energiekreislauf.

© Zn2H2 GmbH Das Zink-Wasserstoff Speichersystem kann zu einem Zehntel der Kosten von Lithium-Batterien produziert werden und speist bedarfsgerecht Wasserstoff in den Energiekreislauf.

Weiterlesen

Wie organische Solarzellen deutlich effizienter werden könnten

 Prof. Frank Ortmann (re.) und Maximilian Dorfner diskutieren, wie spezifische Farbstoff-Moleküle die Effizienz von organischen Solarzellen erhöhen können.

Prof. Frank Ortmann (re.) und Maximilian Dorfner diskutieren, wie spezifische Farbstoff-Moleküle die Effizienz von organischen Solarzellen erhöhen können.

Farbstoff-Moleküle beschleunigen den Transport gespeicherter Sonnenenergie

Die Sonne schickt enorme Energiemengen auf die Erde. Doch in Solarzellen geht ein Teil davon verloren. Gerade bei organischen Solarzellen, die für innovative Anwendungen in Frage kommen, ist das eine Hürde für ihre Nutzung. Ein Schlüssel, um sie leistungsfähiger zu machen: Ein verbesserter Transport der im Material zwischengespeicherten Sonnenenergie. Dass sich durch bestimmte organische Farbstoffe regelrechte Autobahnen ausbilden können, hat eine Forschungsgruppe der Technischen Universität München (TUM) nun gezeigt. Weiterlesen

Mit neuem Recyclingprozess thermoplastische Kohlenstofffaser-Tapes kontinuierlich ablösen und wiederverwerten

© Fraunhofer IPTRecyceltes thermoplastisches Carbonfaser verstärktes UD-Tape

© Fraunhofer IPT
Recyceltes thermoplastisches Carbonfaser verstärktes UD-Tape

Der Absatzmarkt für Kunststoffprodukte wächst. Zugleich nimmt die Umweltbelastung durch nicht-abbaubare Kunststoffe zu und erfordert neue Recyclingstrategien. Am Fraunhofer-Institut für Produktionstechnologie IPT in Aachen haben Forschende einen Recyclingprozess entwickelt, um das Faserverbundmaterial gebrauchter Drucktanks in einem Ablöseprozess zurückzugewinnen und für neue Leichtbauprodukte wiederzuverwerten. Ziel ist es, Faserverbundkunststoffe (FVK) zu recyceln, ohne dass es zu deutlichen Einbußen der Produktqualität kommt. Dem Fraunhofer-Team ist dies im Forschungsprojekt »Tankcycling« nun gelungen: Über 90 Prozent der mechanischen Eigenschaften bleiben erhalten. Weiterlesen

Effizienteres Befüllen mit Kältemitteln – neue Lösung von AGRAMKOW für Wärmepumpen

Ein Plus an Nachhaltigkeit für einen boomenden Markt – bis zu 90 % weniger Energieverbrauch

Der Wärmepumpenmarkt in Europa wächst rasant – und damit die Anforderungen an die Hersteller, ihre Prozesse zu optimieren. Dafür hat Agramkow, der weltweit führende Spezialist von Befüll- und Testsystemen für Kühlgeräte- und Klimatechnik, eine besondere Technologie entwickelt: die NO-ZONE-Lösung. Damit wird die übliche Sicherheitszone um den Einfüllbereich für entflammbare Kältemittel stark reduziert, ohne die Sicherheit zu beeinträchtigen. Die Lösung passt in jede Produktionslinie. Es sind keine Umbauten oder zeitaufwendige Installationen von Gasschutzwänden, Förderschächten oder komplexen Belüftungen erforderlich. Die Hersteller können ihren Produktionsbereich effizienter nutzen und gleichzeitig den Energieverbrauch minimieren, der ansonsten für Belüftung und Heizung/Kühlung erforderlich wäre. „So können unsere Kunden ihre Kapazität erhöhen, die Produktqualität verbessern und deren Leistung steigern”, erläutert Søren E. Nielsen, CEO von Agramkow. Die dänische Firma gehört zur Division Measuring and Process Systems der Dürr AG.

(Bildquelle: Agramkow Fluid Systems)

(Bildquelle: Agramkow Fluid Systems)

Weiterlesen

Energiewende mit Wasserstoff vom Dach

Forschende des KIT und Partner entwickeln Konzept für hocheffiziente Fotoreaktorpaneele zum Bestücken preisgünstiger Module (Foto: Amadeus Bramsiepe, KIT)

Forschende des KIT und Partner entwickeln Konzept für hocheffiziente Fotoreaktorpaneele zum Bestücken preisgünstiger Module (Foto: Amadeus Bramsiepe, KIT)

Wasserstoff, Kraftstoffe und sogar Trinkwasser effizient auf Dachflächen oder in Solarparks produzieren – das wollen Forschende des Karlsruher Instituts für Technologie (KIT) und ihre kanadischen Partner mit kostengünstigen Fotoreaktormodulen ermöglichen.

Bei der künstlichen Fotosynthese werden chemische Reaktionen mithilfe von Sonnenlicht durchgeführt. Wie beim natürlichen Vorbild werden Photonen dabei von einem fotokatalytisch aktiven Material so absorbiert, dass ihre Energie direkt eine chemische Reaktion antreibt. „Inzwischen sind unterschiedliche Fotokatalysatoren bekannt. Mit ihnen lässt sich zum Beispiel Wasser in Wasserstoff und Sauerstoff spalten, es lassen sich aber auch klimaneutrale Kraftstoffe aus Wasser und Kohlendioxid herstellen“, sagt Paul Kant vom Institut für Mikroverfahrenstechnik (IMVT) des KIT. Bislang war die Technologie allerdings vor allem im Labor zu finden, weil die Kosten einer Produktion von solarem Wasserstoff schlicht zu hoch waren. Weiterlesen

Mit Ammoniak zu grünem Stahl

Stahl wird künftig vermutlich noch in größeren Mengen gebraucht als heute, seine Produktion muss jedoch klimaneutral werden - Ammoniak könnte dabei helfen. Das Bild zeigt Rollen von Blechen bei ThyssenKrupp in Duisburg. © picture alliance / Rupert Oberhäuser

Stahl wird künftig vermutlich noch in größeren Mengen gebraucht als heute, seine Produktion muss jedoch klimaneutral werden – Ammoniak könnte dabei helfen. Das Bild zeigt Rollen von Blechen bei ThyssenKrupp in Duisburg.
(© picture alliance / Rupert Oberhäuser)

Wasserstoff ist Hoffnungsträger einer klimaneutralen Wirtschaft – auch für die Stahlindustrie. Doch möglicherweise sollte die Branche zusätzlich auch auf Ammoniak setzen, um grünen Stahl zu erzeugen. Das legt die Studie eines Teams des Max-Planck-Instituts für Eisenforschung in Düsseldorf nahe. Darin zeigen die Forschenden, dass Ammoniak ebenso gut geeignet ist wie Wasserstoff, um Eisenerz in Eisen umzuwandeln. Ammoniak kann mit Wasserstoff produziert werden, der mit regenerativem Strom etwa in sonnenreichen Ländern gewonnen wird. Er lässt sich jedoch viel leichter transportieren.

Die Stahlindustrie ist weltweit der größte einzelne Verursacher von CO2-Emissionen. Sieben Prozent beträgt ihr Anteil am weltweiten Treibhausgasausstoß. Und die Menge an produziertem Stahl dürfte der internationalen Energieagentur zufolge sogar von heute knapp zwei Milliarden Tonnen auf bis drei Milliarden Tonnen im Jahr 2050 steigen. Daher würde der CO2-Fußabdruck der Stahlindustrie noch wachsen, wenn sie nicht von Kohle als Reduktionsmittel wegkommt, mit dem sie Eisenerz in Eisen umwandelt. Weiterlesen

Lasertechnik für eine energieeffiziente Herstellung und mehr Leistung von Batteriezellen

© Fraunhofer ILTTrocknung mit Diodenlaser: Durch die spezielle Optik bestrahlt der Laser eine größere Fläche auf der mit Graphitpaste beschichteten Kupferfolie. Die Wechselwirkung der Graphitpartikel mit der Lichtenergie erzeugt Wärme, und die Flüssigkeit verdampft.

© Fraunhofer ILT Trocknung mit Diodenlaser: Durch die spezielle Optik bestrahlt der Laser eine größere Fläche auf der mit Graphitpaste beschichteten Kupferfolie. Die Wechselwirkung der Graphitpartikel mit der Lichtenergie erzeugt Wärme, und die Flüssigkeit verdampft.

Für eine erfolgreiche Elektrifizierung des mobilen Sektors sind leistungsfähige Batteriezellen eine entscheidende Voraussetzung. Nun haben Forschende des Fraunhofer-Instituts für Lasertechnik ILT in Aachen innovative laserbasierte Technologien für die Fertigung von Lithium-Ionen-Akkus entwickelt. Diese bieten deutlich kürzere Ladezeiten und längere Lebensdauer als auf herkömmliche Art und Weise hergestellte Lithium-Ionen-Akkus. Zudem wird durch die laserbasierte Trocknung die wasserbasierte Elektrodenbeschichtung in der Fertigung deutlich energieeffizienter. Weiterlesen