Physiker entwickeln hauchdünne Supraleiter-Folie – neue Nano-Beschichtung auch für die Raumfahrt

Es ist eine neue Klasse von Supraleitern: Experimentalphysiker aus dem Forscherteam um Professor Uwe Hartmann von der Universität des Saarlandes haben einen dünnen Nano-Stoff entwickelt, der supraleitende Eigenschaften hat. Ab etwa minus 200 Grad transportiert er elektrischen Strom verlustfrei, lässt Magnete schweben und schirmt Magnetfelder ab. Das Besondere: Die Forscher haben dabei Fasern mit supraleitenden Nanodrähten zu einem Stoff verwebt, der hauchfein, biegsam und flexibel ist wie Frischhaltefolie. Dies ermöglicht neuartige Beschichtungen, etwa für Weltraum und Medizin. Die VolkswagenStiftung förderte die Forschung; aktuell unterstützt die Deutsche Forschungsgemeinschaft das Projekt.

Auf der Hannover Messe zeigen die Physiker vom 24. bis 28. April ihre Supraleiter-Folie und suchen Partner, mit denen sie diese für den praktischen Einsatz weiterentwickeln können: am saarländischen Forschungsstand (Halle 2, Stand B46). Weiterlesen

Papierartige Werkstoffe für Falt- und Honigwaben-Sandwichkerne

In einem Forschungsvorhaben wurden von der Papiertechnischen Stiftung (PTS) und der Technischen Universität Dresden, Institut für Luft- und Raumfahrttechnik, adaptierte papierartige Werkstoffe für Falt-und Honigwabenkernen in Sandwichstrukturen für den Einsatz in Leichtbaustrukturen entwickelt. Dieses Material besitzt ein deutlich erweitertes Anwendungsfeld und kann in vielfältiger Weise für innovative Produkte im Bereich der leichtgewichtigen Sandwich-Strukturen eingesetzt werden. Die Verbesserung der gewichtsspezifischen Kerneigenschaften durch Einsatz des entwickelten Kernwerkstoffes konnte experimentell und numerisch nachgewiesen werden. Weiterlesen

Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern

© Foto Fraunhofer IWS Dresden
Kohlenstofffaser während der Karbonisierung im Kaltwandreaktor mit Faserdirektheizung

Dresdner Wissenschaftler des Fraunhofer IWS und der TU Dresden haben eine neue energieeffiziente Verfahrenskette zur Herstellung von Kohlenstofffasern entwickelt. Kernpunkt ist die Umwandlung von Präkursor-PAN-Fasern durch Stabilisierung, Karbonisierung und Graphitisierung. Damit kann künftig die Herstellung von Kohlenstofffasern deutlich preiswerter werden. Weiterlesen

„Ressourceneffiziente Entwicklung von thermisch hochbelastbaren Motorkomponenten aus hybriden Werkstoffverbunden – Experimentelle & numerische Analyse“

Landgrebe D., Krüger L., Schubert N., Jentsch E., Lehnert T.

Abstrakt

Anforderungen an Umwelt- und Klimaschutz, wachsender Energiebedarf, steigende Energiekosten sowie die Erhöhung der Sicherheit bilden den Ausgangspunkt für Forschungstätigkeiten im maritimen Sektor. Im Rahmen des Verbundprojektes »INKOV – Entwicklung innovativer Kolben- und Ventillösungen mit Werkstoffverbunden in Schiffsmotoren« werden metallische Werkstoffverbunde entwickelt und untersucht, durch deren Einsatz in schwerölbetriebenen Großmotoren Stickoxid-Emissionen reduziert werden sollen. Weiterlesen

Innovatives metallisches Papier am Fraunhofer IFAM Dresden entwickelt

© Foto Fraunhofer IFAM Dresden
Papiertechnologisch verarbeitete Sinterpapiere (Kupfer und Edelstahl)

Den Forschern des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden ist es in Zusammenarbeit mit der Papiertechnischen Stiftung in Heidenau gelungen, durch die Kombination der Eigenschaften von Papier und Metall ein leichtes, flexibles und gleichzeitig festes Material zu entwickeln. Der metallische Werkstoff auf Basis eines metallisch gefüllten Sinterpapiers ist besonders gut geeignet für Anwendungen in der Filtration, als Membranmaterial, der Katalysatortechnik oder dem Wärmemanagement. Weiterlesen

Kompositwerkstoffe aus erneuerbaren Biomaterialien

Abb. 1: Stabilisierungsanlage im ITCF

Start des europäischen Forschungsprojektes LIBRE mit Beteiligung des ITCF

Als Public-Private Parnership (PPP) startet ein europäisches Forschungsprojekt zur Entwicklung von Lignin-basierten Carbonfasern zum Einsatz in Faserverbundwerkstoffen. Neben namhaften Firmen und Forschungsinstitutionen aus ganz Europa beteiligt sich auch das ITCF Denkendorf an dem Projekt. Ziel des sogenannten ‚LIBRE-Projektes‘ (Lignin Based Carbon Fibres for Composites) ist die Entwicklung neuer, biobasierter Kompositmaterialien: Lignin aus der Zellstoff- und Papiererzeugung soll hierbei den Rohstoff für hochfeste Carbonfaser-Verbundwerkstoffe liefern. Weiterlesen

Die Königsklasse unter den Hochleistungskeramiken

Bild 1: Zahnräder aus Siliziumnitrid

Der technische Fortschritt hängt von Werkstoffen ab, die es ermöglichen, leistungsstarke Komponenten und Systeme herzustellen. Einer dieser Werkstoffe ist Siliziumnitrid (Si3N4), eine Hochleistungskeramik, die sich durch eine Kombination außergewöhnlicher Eigenschaften auszeichnet, aber auch hohe Anforderungen an die Verarbeitung stellt. Der Keramikspezialist Sembach erweitert derzeit seinen Maschinenpark, um Großserienbauteile aus gesintertem Siliziumnitrid (SSN) wirtschaftlich herstellen zu können. Weiterlesen

Hochleitfähige Kunststoffe durch speziell angepasste Graphite

Graphit eignet sich aufgrund seiner exzellenten thermischen Leitfähigkeit ideal als funktionelles Additiv für Wärmemanagementaufgaben in E&E-Anwendungen und Automotive. Die Produktpalette der Graphite ist vielfältig, wobei sich diese gravierend in der Performance unterscheiden. Durch die Auswahl geeigneter, teils modifizierter Graphite lassen sich die Eigenschaften je nach Anwendung entsprechend optimieren. Weiterlesen

Z-Ultra gebrauchsfertig: Neue Chromstähle für Hochtemperaturanwendungen

Im Projekt Z-Ultra wurde ein 12-Tonnen-Schmiedestück als Demonstrator hergestellt. (© Saarstahl)

Als wichtigster Industriewerkstoff ist Stahl mit mehr als 2500 Sorten hoch spezialisiert für unterschiedliche Anwendungen. Kleinste Änderungen der Zusammensetzung können das Materialgefüge auf atomarer Skala ändern und das Materialverhalten »im Großen« verbessern. Das Konsortium des EU- Projekts Z-Ultra unter Leitung des Fraunhofer-Instituts für Werkstoffmechanik IWM entwickelte neue 12%-Chrom-Stähle für Hochtemperaturanwendungen, die bis zu 30% fester als herkömmliche 9%-Chrom-Stähle sind und im Kraftwerk längere Zeit höhere Temperaturen und Drücke aushalten. Atomistische Simulationsmethoden unterstützten hierbei die Stahl-Entwickler dabei, die Legierungen zielgerichtet zu entwickeln. Weiterlesen

Kombination von Isolierung und thermischer Masse

Der PCM-Würfel behält eine Temperatur von 21°C, bis er komplett geschmolzen ist.

© Foto Fraunhofer ICT Der PCM-Würfel behält eine Temperatur von 21°C, bis er komplett geschmolzen ist.

Brennt die Sommersonne vom Himmel, nehmen in Gebäudehüllen integrierte Phasenwechselmaterialien (PCM) die Hitze auf – es bleibt drinnen schön kühl. Wird es draußen kälter, geben sie die gespeicherte Wärme ab. Mehrere Gramm dieser Speichermedien können lange Zeit vor Überhitzung und Unterkühlung schützen. Forscher haben nun erstmals durch etablierte Verfahren der Formgebung die isolierenden Eigenschaften von Schäumen mit den thermischen Massen von PCM vereint. In dieser Materialkombination wird der Wärmefluss durch die Wand über einige Stunden verringert. Weiterlesen