Perlmutt als Vorbild für biomimetisches Design

Stefan Reschke, Dr. Diana Freudendahl, Dr. Ramona Langner

Die Biomimetik, im deutschen häufig auch als Bionik bezeichnet, sucht einerseits gezielt nach Strukturen und Materialkombinationen in der Natur, die als direkte Vorbilder für technische Innovationen von Bedeutung sein können, siehe z.B. den Klettverschluss. Andererseits analysiert sie biologische Struktur- oder Organisationsprinzipien als solche und sucht danach Transfermöglichkeiten in technische sowie auch prozess- und organisationsbezogene Anwendungen. Im Bereich mechanischer Eigenschaften zeigen verschiedene natürliche Materialien wie Baumhölzer, Bambus, Knochen oder Muschelschalen Eigenschaftskombinationen, die bei klassischen Werkstoffen schlecht vereinbar scheinen, z.B. sehr hohe Härte mit sehr hoher Bruchzähigkeit. Hier bieten die in der Natur typischen hierarchischen mikro-nano-Architekturen, gepaart mit vielfältigen Wechselwirkungen an den inneren Grenzflächen dieser natürlichen Materialien, vielversprechende Designvorlagen. Weiterlesen

Recycling von carbonfaserverstärkten Kunststoffen

Dr. Diana Freudendahl, Stefan Reschke, Dr. Ramona Langner

Der Leichtbau und die Entwicklung entsprechender Werkstoffe werden weiterhin stark vorangetrieben und ihre Anwendungsfelder nehmen stetig zu. Neben den Leichtmetallen sind hier vor allem Kunststoffe und faserverstärkte Kunststoffe (FVK) von Interesse. Aufgrund strenger rechtlicher Bestimmungen sowie ökologischer und ökonomischer Überlegungen wird dabei mittlerweile nicht mehr nur die Herstellung der Materialien betrachtet, sondern zunehmend bereits vor deren Einsatz auch ihr Verbleib nach Lebensende geklärt. Während viele Werkstoffe bereits gut recycelt werden können, stellen insbesondere die noch relativ jungen carbonfaserverstärkten Kunststoffe (CFK) eine Herausforderung dar. Verwertbare Abfälle fallen über den gesamten Produktentstehungs- und lebenszyklus an und die Herstellung der eingebetteten Carbonfasern ist sehr energie- und kostenintensiv, weshalb das Recycling auch ökonomisch sinnvoll ist. Hinzu kommt, dass die Deponierung stark reglementiert ist und die rechtlich geforderten Recyclingquoten bereits jetzt sehr hoch sind; für die Automobilbranche liegt sie beispielsweise bei 95%. Weiterlesen

Soft Robots

Dr. Diana Freudendahl, Stefan Reschke, Dr. Ramona Langner

Mit dem Begriff Roboter werden im allgemeinen Sprachgebrauch präzise Computer-gesteuerte automatisierte und zum Teil humanoide Maschinen verbunden, die eine starre Struktur besitzen und Gelenke, Scharniere oder Klappen aufweisen. Soft Robots bestehen im Gegensatz dazu aus nachgiebigen Materialien und sind an biologische Systeme angelehnt. Potentielle Anwendungsgebiete von Soft Robots sind beispielsweise Such- und Bergungseinsätze auf unzugänglichem Terrain, die feinfühlige Handhabung empfindlicher Gegenstände oder weiche Orthesen, die insbesondere für die Rehabilitation von Gliedmaßen sehr gezielte Versteifungen oder Formungen ermöglichen. Um autonomes Verhalten zu ermöglichen, müssen alle Anlagen der Sensorik und Aktorik, der Steuerungscomputer, die Energieversorgung und Kommunikationsvorrichtungen in das flexible Material eingebettet werden. Idealerweise werden dazu Smart Materials genutzt, die gleich mehrere dieser Funktionen integrieren. Die anwendungsnahe Forschung an Soft Robots ist zudem ein sehr interdisziplinäres Feld, das querschnittliche Expertisen aus Informatik, Materialwissenschaften und dem Maschinenbau nutzt. Weiterlesen

3D-Druckverfahren in der regenerativen Medizin

Stefan Reschke, Dr. Diana Freudendahl, Dr. Ramona Langner

3D-Druckverfahren, wegen des schichtweisen Materialaufbaus im Englischen überwiegend unter der Bezeichnung „Additive Manufacturing“ zusammengefasst, dienen zunehmend der kommerziellen Herstellung von kundenspezifisch maßangefertigten Bauteilen mit komplexen Geometrien, welche über herkömmliche Produktionsverfahren grundsätzlich nicht oder zumindest nicht in einem Stück gefertigt werden können. Hinzu kommt, dass einige 3D-Druckverfahren bei Raumtemperatur und normalen Umgebungsbedingung stabile räumliche Strukturen hoher Komplexität aufbauen können. Sie sind also prinzipiell dazu geeignet, mit lebender Materie wie z.B. Stammzellen des Patienten oder sehr empfindlichen biologischen Substanzen und Wirkstoffen, z.B. Kollagen oder sogenannte Wachstumsfaktoren, räumliche Strukturen wie weiche (z.B. Bindegewebe) und harte Gewebe (Knochen) oder auch Organe herzustellen. Ein weiterer extrem wertvoller Vorteil dieser Verfahren ist, dass mit ihnen direkt bei der Produktion des Bauteils Gradienten in Bezug auf Materialzusammensetzung und Porosität erzeugt werden können. Weiterlesen

Elektrochrome Energiespeicher

Stefan Reschke, Dr. Ramona Langner, Dr. Diana Freudendahl

Elektrochrome Bauteile wie zum Beispiel Fenster mit elektrisch einstellbarer Transparenz bzw. Abdunkelung sowie wiederaufladbare Batterien und elektrochemische Kondensatoren (sog. Superkondensatoren) sind sich in Bezug auf Funktionsprinzip, Reaktionskinetik, Werkstoffeigenschaften und Konstruktionsprinzip der Bauteile sehr ähnlich. Hierzu gehört, dass ihnen ein schematischer Aufbau zueigen ist, der aus Elektrode, Elektrolyt und Gegenelektrode sowie einem externen Stromkreislauf besteht. Die elektrochrome Energiespeicherung ist ein sehr junges Konzept und befindet sich überwiegend im Forschungsstadium. Weiterlesen

Dreidimensionale Graphen-Netzwerke

Dr. Diana Freudendahl, Stefan Reschke, Dr. Ramona Langner

Der Werkstoff Graphen weist hervorragende Charakteristika auf, die ihn für viele verschiedene Anwendungen hochinteressant macht. Ob er seine einzigartigen elektrischen Eigenschaften sowie seine extrem hohe Festigkeit auch beim Einsatz als Volumenwerkstoff oder als Komposite beibehalten kann, ist jedoch in Teilen noch ungeklärt. Ein wesentlicher Grund hierfür ist, dass sich aufgrund der starken van-der-Waals-Kräfte die einzelnen Graphenschichten zu Graphit stapeln, wodurch sich die Eigenschaften wieder erheblich verschlechtern. Daher werden nun Graphen-Materialien entwickelt, bei denen die einzelnen Schichten in dreidimensionalen Netzwerken aufgespannt werden, ohne dass es zu einem Rearrangement zu Graphit kommt. Solche 3D Graphen-Netzwerke (3D-GN) werden je nach Strukturart als Graphen-Schäume (GF), Graphen-Schwämme (GS) oder Graphen-Aerogele (GA) bezeichnet. Ihre potentiellen Anwendungsgebiete entsprechen bislang weitestgehend denen von Graphen- oder Graphenoxid-Schichten, wobei sie in der Nutzung deutlich verbesserte Leistungen zeigen. Weiterlesen

Lignin

Dr. Diana Freudendahl, Stefan Reschke, Dr. Ramona Langner

Die weltweite Kunststoffproduktion steigt stetig an, und gleichzeitig nimmt auch die Herstellung biobasierter Kunststoffe immer weiter zu. Neben bekannteren Biokunststoffen wie Celluloseestern, Stärkeblends oder Polymilchsäure wird nun auch zunehmend Lignin als Rohstoff für Basischemikalien und die Herstellung wertvoller polymerer Werkstoffe eingesetzt. Lignin besteht aus einer Mischung aus drei verschiedenen Zimtalkoholen, die in pflanzlichen Geweben zwischen Cellulose und Hemicellulose eingelagert und zu Polymeren verknüpft werden. Auf diese Weise tragen sie wesentlich zu der besonderen Festigkeit verholzter Pflanzen bei. Das bisher eher als Abfallstoff betrachtete Lignin wird aus dem Zellwandmaterial verholzter Pflanzen, der Lignocellulose, gewonnen. Diese wird vor allem in der Papierherstellung als Rohstoffquelle für Cellulose und Hemicellulose benötigt. Weiterlesen

Poröse Flüssigkeiten

Dr. Diana Freudendahl, Stefan Reschke, Dr. Ramona Langner

Gleichmäßige, mikroporöse Strukturen werden charakteristischerweise nur bei Feststoffen gefunden. Solche Werkstoffe mit definierten und stabilen Porengrößen, wie Zeolithe oder metallorganische Gerüstverbindungen, besitzen mittlerweile in den verschiedensten Anwendungsbereichen Bedeutung. So werden sie unter anderem als Gasspeichermedien, Reaktionsmedien oder zur Stofftrennung genutzt. Ein dazu komplementäres Gebiet stellt das Konzept der porösen Flüssigkeiten dar, das 2007 erstmals theoretisch diskutiert wurde. Die aktuell noch sehr junge Forschung auf dem Gebiet bewegt sich daher auch noch im Prototypenstadium. Weiterlesen

High-Entropy Alloys

Stefan Reschke, Dr. Diana Freudendahl, Dr. Ramona Langner

Unter High-Entropy Alloys (HEAs) versteht man Legierungen, in denen alle Elemente ungefähr equimolar, also in etwa gleicher Teilchenanzahl vorliegen. HEAs werden i.d.R. aus 4 oder mehr metallischen Elementen hergestellt. Dies unterscheidet sie fundamental von klassischen Legierungen, bei denen ein Element wie z.B. Nickel (in Nickel-Basislegierungen) oder Eisen (in Stählen) den Hauptanteil, die so genannte Basis, stellt, und alle weiteren Elemente in deutlich geringerem Anteil begleitend den Werkstoff bilden. Andere Begriffe, mit denen HEAs auch belegt werden, sind „Multi-Principal-Element Alloys“ (MPEAs) und „Complex Concentrated Alloys“ (CCAs). Weiterlesen

Ionische Flüssigkeiten als Werkstoffbasis

Stefan Reschke, Dr. Diana Freudendahl, Dr. Ramona Langner

Unter ionischen Flüssigkeiten (engl. Ionic Liquids, ILs) versteht man Salze in flüssigem Zustand, sie sind also hauptsächlich aus positiv und negativ geladenen Ionen sowie kurzlebigen Ionenpaaren aufgebaut. Konventionelle Flüssigkeiten bestehen dagegen überwiegend aus elektrisch neutralen Molekülen, wie z.B. Wasser. Die überwiegende Zahl an ILs, die bei niedrigen Temperaturen (unter 100°C, Kochsalz zum Vergleich schmilzt bei ca. 800°C) flüssig ist, besteht aus organischen Salzen. Diese sind seit über 100 Jahren bekannt, werden aber erst seit ca. 25 Jahren intensiver untersucht, als gezeigt werden konnte, dass viele von ihnen an Luft und Wasser stabil bleiben. Weiterlesen