Flexible Messaufnahme, die den Karosseriebau revolutionieren könnte

© Fraunhofer IWU
Eine für alles: Das PROMESS Measuring Device ist die erste einsatzfähige flexible Messvorrichtung für den Großteil aller Prüfaufgaben im Karosseriebau.

Um die Maße von Karosseriebauteilen und -baugruppen auch nur einer einzigen Modellvariante zu überprüfen, benötigten Automobilhersteller bisher dutzende von individuellen Vorrichtungen, in welche die Teile für den Messvorgang eingespannt werden müssen. Ein teurer, platz- und materialintensiver Prozess. Wie es anders geht, zeigen die Wissenschaftler des Fraunhofer IWU: Gemeinsam mit einem Industriepartner haben sie eine flexible Messaufnahme entwickelt, die den Karosseriebau revolutionieren könnte. Weiterlesen

Lösungen für die Industrie 4.0

VITRONIC, ein  führendes Unternehmen für industrielle Bildverarbeitung, präsentiert auf der Leitmesse Automatica 2018 neue Lösungen und Anwendungen für die Automobilbranche. Gezeigt werden unterschiedliche Systeme im Bereich der optischen Oberflächenprüfung sowie die nächste Generation des Schweißnahtprüfsystems VIRO WSI. Dabei identifizieren VITRONIC Prüfsysteme nicht nur kleinste Fehler während des Produktionsprozesses, sondern liefern wertvolle Daten, die sich für Prozessoptimierungen nutzbar machen lassen. Denn durch die enge Verzahnung von Bildverarbeitungstechnologien und Automatisierung entstehen zahlreiche Möglichkeiten, um zukunftsweisende Konzepte wie die Smart Factory in die Realität umzusetzen. Weiterlesen

Neue Simulation zur Kaltrissbildung bei hochfesten Stählen

© Fraunhofer IWM
Die neue Simulationsmethode hilft, Laserschweißprozesse zu optimieren: Lichtmikroskopische Aufnahme des Schweißnahtgefüges einer Laserschweißverbindung (links) im Vergleich mit der berechneten lokalen diffusiblen Wasserstoffkonzentration in Abhängigkeit von Temperatur-Zeit-Verlauf und Schweißeigenspannungen (rechts).

Hochfeste Stähle spielen im modernen Fahrzeug- und Maschinenbau eine wesentliche Rolle. Werden diese Stähle bei der Herstellung von Bauteilen geschweißt, können bewegliche Wasserstoff-Atome im Material Probleme verursachen: Die Atome sammeln sich langsam an Bauteilbereichen mit hohen Eigenspannungen an und machen dort den Stahl spröde. Die Folge sind sogenannte Kaltrisse, die für Bauteilausschuss sorgen können. Dr. Frank Schweizer vom Fraunhofer-Institut für Werkstoffmechanik IWM hat nun eine Simulations-Methodik entwickelt, mit der Bauteilhersteller diese Kaltrissneigung bewerten und ihre Produktion entsprechend anpassen können. Weiterlesen

Porositätscharakterisierung von CFK-Werkstoffen mit der Mikro-Computertomografie

Es gibt unterschiedliche fertigungsbezogene Fehlstellen in karbonfaserverstärkten Kunststoffen (CFK) und sie haben meist eines gemeinsam: Die Verminderung der mechanischen Festigkeit. Porosität hat in CFK-Werkstoffen einen wesentlichen Einfluss auf die Übertagung von Schubkräften. Die intralaminare Scherfestigkeit nimmt bis ca. 4 Vol.-% Porosität näherungsweise um ca. 7 % je Volumenprozent ab. Eine präzise Ermittlung des Porositätsgehalts kann daher entscheidend für das Versagen von industriellen Bauteilen sein. Gerade im Bereich der Luftfahrt kann das mit verehrenden Folgen verbunden sein. Großflächige Untersuchungen hinsichtlich der Porosität sind hier sehr wichtig.

Abb.1: Verschiedene Porenformen in CFK-Werkstoffen

Weiterlesen

Smart vernetzt: Intelligente Sensoren überwachen und optimieren Industrieprozesse 4.0

Der aktuell größte Treiber für Innovationen ist die Informationstechnologie. Schon heute kommunizieren moderne Produktionssysteme mit ihrer Umgebung und organisieren sich selbst: Industrie 4.0 ist auf dem Vormarsch. Cyber-physikalische Systeme (CMS) sind die stillen Helden dieser Entwicklung. Prognosen besagen, dass sie die weltweite Produktion bestimmen werden. Dabei sorgen intelligente Sensoren zur Überwachung und Regelung von Produktionsprozessen dafür, dass vernetzte, autonome Arbeitsprozesse zuverlässig ablaufen. Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF haben diese Technologien im Rahmen des Projekts „ImProcess4.0“ genutzt und ein auf intelligenten Sensorknoten basierendes Überwachungs- und Optimierungssystem für Mischverfahren mit Doppelschneckenextrudern entwickelt. Das Ergebnis: Schäden werden früher erkannt, der Verschleiß reduziert und Wartungs- sowie Reparaturtermine optimiert. Weiterlesen

Störgeräusche direkt an der Maschine messen und auswerten

© Fraunhofer IDMT
Demonstrator Hannover Messe: Konfigurierte drahtlose Sensorknoten (im Vordergrund) senden Zustandsmeldungen der Axialkolbenpumpe (links) an ein Tablet.

Fraunhofer zeigt auf der Hannover Messe vom 23. bis 27. April 2018 den Prototypen eines neuen kognitiven Systems zur vorausschauenden Wartung (Predictive Maintenance) von Produktionsanlagen (Halle 2, Stand C22). Intelligente akustische Sensoren verarbeiten batteriebetrieben an Ort und Stelle Audiosignale von Maschinen und Anlagen. Aus den Informationen, die drahtlos an eine Auswerteeinheit weitergeleitet werden, lassen sich Rückschlüsse auf den Zustand der Fertigungsanlagen ziehen und mögliche Schäden vermeiden. Industriekunden profitieren von einer kostengünstigen, skalierbaren und datensicheren Industrie 4.0-Lösung, die Ausfallzeiten gering hält. Weiterlesen

Kognitive Sensorik in der Produktion

Im Zuge von Industrie 4.0 wird die Produktion individueller – langfristig streben Unternehmen die Losgröße Eins an. In den Firmen bedeutet Digitalisierung jedoch häufig noch: punktuelle Einzellösungen, die nur unvollständig oder gar nicht miteinander vernetzt sind. Nachfolgende Prozesse oder Vorausplanungen können nicht von den erfassten Daten profitieren. Damit sich die Prozesse verzahnen, anwendungsspezifische Daten austauschen und Abläufe optimieren lassen, entwickelt das Fraunhofer-Institut für Integrierte Schaltungen IIS in Nürnberg Technologien zur Identifikation, Lokalisierung und Kommunikation für kognitive Sensorik und Systeme. Auf der Hannover Messe Preview am 6. Februar und vom 23. bis 27. April 2018 auf der Hannover-Messe stellten die Forschenden entsprechende Lösungen und datengetriebene Anwendungen am Beispiel des Montageprozesses eines Motors vor. Weiterlesen

Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoff-Klassifizierung

In Autos, Windrädern und Brücken wird viel Stahl verbaut, etwa 5.000 Stahlsorten sind auf dem Markt. Doch wie können Hersteller bei einem spezifischen Stahl garantieren, dass er immer dieselbe hohe Qualität aufweist? Bisher werden dafür Materialproben unter dem Mikroskop analysiert und von erfahrenen Mitarbeitern mit Beispielbildern abgeglichen. Diese Werkstoff-Klassifizierung ist jedoch fehleranfällig. Mit Hilfe von maschinellen Lernverfahren haben Saarbrücker Informatiker und Materialforscher daher eine Methode entwickelt, die viel genauer und objektiver ist als herkömmliche Qualitätskontrollen. Weiterlesen

Sensor in Größe eines Stickstoff-Atoms prüft Festplatten

© Foto Fraunhofer IAF Am Fraunhofer IAF hergestellter ultrareiner Diamant für quantenphysikalische Anwendungen.

Elektronische Bauteile werden immer kleiner. Die Quantentechnologie eröffnet neue Wege in die Miniaturisierung. Ein Quantensensor von Fraunhofer-Forschern soll schon bald winzige Magnetfelder, wie sie etwa auf zukünftigen Festplatten vorkommen, vermessen können.

Integrierte Schaltkreise werden immer komplexer. Tatsächlich enthält ein Pentiumprozessor inzwischen rund 30 Millionen Transistoren. Und die magnetischen Strukturen auf Festplatten messen gerade noch 10 bis 20 Nanometer, kleiner als ein Grippevirus mit 80 bis 120 Nanometer Durchmesser. Die Abmessungen geraten somit bald in Größenordnungen, bei denen die Quantenphysik greift. Forscherinnen und Forscher am Freiburger Fraunhofer-Institut für Angewandte Festkörperphysik IAF stellen sich bereits heute den Herausforderungen der Quantentechnologie von morgen. Zusammen mit ihren Kolleginnen und Kollegen des Max-Planck-Instituts für Festkörperforschung entwickeln sie einen Quantensensor, der winzige Magnetfelder, wie sie beispielsweise auf künftigen Festplatten verwendet werden sollen, exakt vermessen kann. Der eigentliche Sensor ist kaum größer als ein Stickstoff-Atom. Als Trägersubstanz dient ein künstlicher Diamant. Weiterlesen

Verunreinigungen auf 3D-Bauteilen erkennen

© Foto Fraunhofer IPM
Das bildgebende Inline-Messsystem F-Scanner untersucht Bauteile während der Fertigung punktgenau auf Verschmutzungen.

Haften Verunreinigungen auf der Oberfläche von Bauteilen, kann dies den weiteren Produktionsprozess erschweren oder das ganze Bauteil unbrauchbar machen. Ein Fluoreszenzscanner von Fraunhofer IPM ermöglicht erstmals, metallische Bauteile im Fertigungsprozess bildgebend auf Öl, Späne oder Reinigungsmittel zu untersuchen – und jedes einzelne Objekt zu prüfen.

Kleinste Dinge können große Auswirkungen haben: So etwa winzige Schmutzpartikel, die bei der Fertigung von Bauteilen auf ihrer Oberfläche kleben. Beispiel Ölwanne: Sitzen Ölverunreinigungen dort, wo später die Dichtmasse angebracht werden soll, hält die Dichtung an dieser Stelle nicht – die Wanne wird hier wahrscheinlich durchlässig sein. Bisher ist es technisch nicht möglich, alle Bauteile auf Restverschmutzungen zu überprüfen. Es werden lediglich Stichproben genommen, die zum einen zeitintensiv sind, zum anderen keine Aussage darüber ermöglichen, an welcher Stelle der Bauteiloberfläche sich die Verunreinigung befand. Weiterlesen