Schutzschichten für keramische Faserverbundwerkstoffe

Abbildung 1: Bruchfläche eines CMC; Fasern wurden aus dem Gefüge herausgezogen und ermöglichen damit schadenstolerantes Verhalte

Keramische Faserverbundwerkstoffe

Verbundwerkstoffe aus keramischen Fasern umgeben von einer keramischen Matrix werden in der Fachwelt als CMC (Ceramic Matrix Composites) bezeichnet und sind eine sehr junge Werkstoffklasse. Im Vergleich zu metallischen oder polymeren Verbundwerkstoffen, dienen die Fasern in CMC nicht der Erhöhung der Festigkeit oder Steifigkeit, sondern ermöglichen durch den Faser-Pull-Out (Verbrauch von Energie beim Risswachstum) ein quasiduktiles oder auch schadenstolerantes Verhalten (Abbildung 1). Defekte, welche in dichten Hochleistungskeramiken zum katastrophalen Versagen führen würden, werden durch CMC ohne weiteres ertragen und ermöglichen den Einsatz in sicherheitsrelevanten Anwendungen. Weiterlesen

Forscher entwickeln festes Material mit beweglichen Partikeln, die auf äußere Einflüsse reagieren

In den meisten Materialien bewegt sich wenig. Aber in einem neuen „aktiven Nanokomposit“ wimmelt es gewaltig: Kleine Partikel verbinden sich oder trennen sich und ändern damit die Farbe des ganzen Materials. Es stammt von Forschern des Leibniz – Institut für Neue Materialien in Saarbrücken, die Materialien so mehr Dynamik verleihen wollen. Dank der beweglichen Komponenten kann das transparente Material auf Temperaturveränderungen und zukünftig auch auf andere äußere Einflüsse, wie chemische Substanzen und Gifte, durch einen Farbwechsel „antworten“. Deshalb arbeiten die Forscher in absehbarer Zeit zum Beispiel daran, Folienverpackungen zu entwickeln, die ihre Farbe verändern, wenn Lebensmittel verdorben sind.

Bewegliche Partikel in eingeschlossenen Flüssigkeitströpfchen ändern die Farbe fester Materialien: Bei höherer Temperatur (links) bewegen sie sich einzeln in den Tropfen und geben dem festen Material eine rubinrote Farbe; bei niedriger Temperatur (rechts) ballen sich zusammen und verändern die Farbe zu Grau-Violett. Quelle: INM

Weiterlesen

Neuer Hybridwerkstoff aus Holz und Metall für den Leichtbau

© Fraunhofer WKI Aus ökologischer Sicht eignen sich Holzschäume sehr gut für eine Vielzahl von Einsatzbereichen.

Holzschaum und Metallschwamm – passt das zusammen? Dieser Frage gingen Expertinnen und Experten vom Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut, WKI im Projekt »HoMe-Schaum« – das Kürzel steht für Holz-Metall-Schaum – gemeinsam mit den Wissenschaftlern des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik IWU und des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM nach. Das Ergebnis: Die gegensätzlichen Werkstoffe harmonieren perfekt. Der neuartige Materialmix zeichnet sich durch seine sehr guten dämmenden Eigenschaften und eine niedrige Biegefestigkeit aus. Weiterlesen

Untersuchungen zum Einfluss der spanenden Bearbeitung und des Schwefelgehalts auf die Schwingfestigkeit des Vergütungsstahls 42CrMo4+QT

Abbildung 1: Prinzipskizze Autofrettage [nach Gre06] und Einlippentiefbohren

42CrMo4+QT gilt als einer der gebräuchlichsten Vergütungsstähle in der Automobil- und Zuliefererindustrie und ist weit verbreitet in industriellen Anwendungen. Anwendungsgebiete sind u.a. Komponenten des Antriebstrangs, wie Pleuel, Kurbelwellen oder Common-Rails für Einspritzsysteme. Da diese Komponenten großen dynamischen Belastungen ausgesetzt sind, spielt ihre Schwingfestigkeit eine entscheidende Rolle. Um stetig steigende Anforderungen an diese Bauteile zu erfüllen, kann neben der Verwendung höherfester Werkstoffe auch die Anpassung der Produktionsprozesse zu einer Steigerung der Schwingfestigkeit beitragen. Weiterlesen

Härten auf Knopfdruck: Kohlenstoff-Faser-Verbundwerkstoffe und Unterwasser-Kleber

Das neuartige Material kann sogar unter Wasser ausgehärtet werden. Foto: TU Wien

An der TU Wien wurde eine Spezialformel für ein Epoxidharz entwickelt. Es kann für faserverstärkte Komposite im Flugzeug-, Auto- oder Schiffsbau eingesetzt werden, oder ist sogar für Unterwassersanierungen geeignet.

Innerhalb von Sekunden kann sich das neue Material völlig verändern: Am Anfang ist es transparent, es kann flüssig oder pastos sein. Bestrahlt man es an irgendeinem Punkt mit dem passenden Licht, beginnt sich das gesamte Spezialharz zu verfestigen und nimmt dabei eine dunkle Farbe an. Die spezielle Epoxidharz-Formel, die das möglich macht, wurde von der TU Wien patentiert. Nun gelang es, diesen Prozess sogar unter Wasser ablaufen zu lassen. Damit kann das neue Epoxidharz für Aufgaben verwendet werden, die bisher nur sehr schwer zu lösen waren – etwa um unter Wasser Risse in Brückenpfeilern oder Dämmen zu verkitten, oder um im laufenden Betrieb Rohre zu reparieren. Weiterlesen

Turbolader für den Lithium-Akku

Einem Team von Materialforschern aus Jülich, München und Prag gelang die Herstellung eines Verbund-Werkstoffs, der sich besonders gut für Elektroden in Lithium-Batterien eignet. Das sogenannte Nanokomposit-Material könnte nicht nur die Speicherkapazität und Lebensdauer der Batterien deutlich steigern, sondern auch ihre Ladegeschwindigkeit.

Ob für Handy, Tablet oder Elektroauto: Lithium-Ionen-Akkus sind das Maß der Dinge. Ihre Speicherfähigkeit und Leistungsdichte sind der anderer wiederaufladbarer Batteriesysteme weit überlegen. Doch trotz aller Fortschritte halten Smartphone-Batterien nur einen Tag lang, Elektroautos brauchen Stunden zum Aufladen. Wissenschaftler arbeiten deswegen Möglichkeiten, die Energiedichten und Laderaten der Allround-Batterien weiter zu verbessern. „Ein wichtiger Faktor ist das Anodenmaterial“, erklärt Dina Fattakhova-Rohlfing vom Institut für Energie- und Klimaforschung (IEK-1). Weiterlesen

Elektrisch leitfähige Keramikwerkstoffe als Komponenten für die Elektrotechnik

Bild 1: Beispiele verschiedener elektrisch leitfähiger Keramikwerkstoffe mit typischen Widerstands-
werten bei 20 °C

Einleitung

Keramische Werkstoffe sind mit Bezug zur Elektrotechnik vor allem als Isolationsmaterialien bekannt. Dass Keramiken oft auch wegen ihrer elektrischen Funktionalität als Leiter genutzt werden, bleibt eher verborgen. Tatsächlich verfügt die Werkstoffklasse Keramik hinsichtlich der elektrischen Leitfähigkeit über den größten Bereich aller Werkstoffklassen mit spezifischen Widerständen bei Raumtemperatur von 10^14 bis 10^-5 Ωcm. Neben der elektrischen Variabilität kann Keramik mit ihren typischen Eigenschaften wie thermische Beständigkeit, hoher Widerstand gegen Verformung, gegen Verschleiß oder chemische Korrosion unikale Anforderungsprofile auch in der Elektrotechnik erfüllen. Weiterlesen

Neuartige Preformen aus hochsteifen technischen Fasern für Verbundkeramiken

Abbildung 1: Einteilung der textilen Gebilde in Anlehnung an DIN 60000

Um neuartige, faserverstärkte keramische Verbundwerkstoffe (CMC = Ceramic Matrix Composites) bei Temperaturen oberhalb 1000 °C dauerhaft einsetzen zu können, erarbeitet der Lehrstuhl Keramische Werkstoffe (Universität Bayreuth) gemeinsam mit unterschiedlichen Projektpartnern Konzepte für neue textile Preformen aus keramischen Hochleistungsfasern. Übergeordnetes Ziel der Zusammenarbeiten ist es, Lücken zum internationalen Stand der Technik zu schließen und neue Erkenntnisse zu schaffen. Im folgenden Artikel werden die Anforderungen an Preformen erläutert, sowie neuartige textile Fertigungstechniken und Anwendungsbeispiele gezeigt. Weiterlesen

Gradierte Massivwerkstoffe

Dr. Heike Brandt, Dr. Diana Freudendahl, Dr. Ramona Langner

Der zunehmende Bedarf an Miniaturisierung und Gewichtseinsparung führt dazu, dass die Anforderungen an Werkstoffe steigen und darüber hinaus immer häufiger auch zusätzliche Funktionalitäten übernommen werden sollen. Dies kann oft nicht von einem Werkstoff alleine erfüllt werden und unterschiedlichste Polymere, Metalle und Keramiken werden innerhalb der einzelnen Werkstoffklassen oder aber Werkstoffklassen-übergreifend kombiniert. In vielen Fällen weisen solche homogenen Komposite jedoch abrupte Eigenschaftsübergänge auf, die speziell bei starker mechanischer oder thermischer Belastung Schwachstellen darstellen können. Das Konzept der Gradientenwerkstoffe mit kontinuierlichen Eigenschaftsübergängen wurde Mitte der 1980er-Jahre in Japan geprägt, indem sie nicht nur theoretisch beschrieben, sondern als Barriere für extreme thermische Spannungen, wie sie in der Raumfahrt auftreten, herangezogen wurden. Weiterlesen

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

© Fraunhofer IMWS
Biobasierte Laminate auf der Basis einer Polymilchsäure-Polypropylen-Matrix im Verbund mit unidirektional ausgerichteten Celluloseregeneratfasern in verschiedenen Aufbauten.

Autos sollen leichter und damit umweltschonender werden. Ein wichtiger Ansatz dabei ist es, metallische Bauteile durch Faser-Kunststoff-Verbunde mit gleicher Stabilität zu ersetzen. Ein Team des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS in Halle (Saale) hat gemeinsam mit Partnern endlosfaserverstärkte Kunststoff-Verbunde entwickelt, die nicht nur sehr gute Leichtbau-Eigenschaften besitzen, sondern sogar auf Basis nachwachsender Rohstoffe hergestellt worden sind. Weiterlesen