Neuartige „Tinte“ für den lichtbasierten 3D-Druck

Konzept zur Herstellung elektrochromer Strukturen mithilfe von Digital Light Processing (links); Anwendung im spektroelektrochemischen Experiment (rechts). Bild: Universität Stuttgart / GRK 2948 / F. Sterl

Konzept zur Herstellung elektrochromer Strukturen mithilfe von Digital Light Processing (links); Anwendung im spektroelektrochemischen Experiment (rechts).
Bild: Universität Stuttgart / GRK 2948 / F. Sterl

Eine neuartige „Tinte“ macht es möglich, elektrochemisch schaltbare, leitfähige Polymere mit einem lichtbasierten Verfahren dreidimensional zu drucken. Forschende der Universitäten Heidelberg und Stuttgart ist es gelungen, sogenannte Redoxpolymere für die additive Fertigung mit Digital Light Processing nutzbar zu machen. Die auf diese Weise entstehenden komplexen zwei- und dreidimensionalen Strukturen können elektrochemisch so manipuliert werden, dass sie ihre Farbe ändern. Dies eröffnet neue Perspektiven für die Fertigung etwa von 3D-gedruckten optoelektronischen Geräten. Die Forschungsarbeiten wurden im Rahmen des von beiden Universitäten getragenen Graduiertenkollegs „Gemischter Ionen-Elektronentransport: Von den Grundlagen zur Anwendung“ durchgeführt.

Digital Light Processing: Schnelle Herstellung komplexer Strukturen

Digital Light Processing (DLP) ist ein lichtbasiertes Verfahren des 3D-Drucks, bei dem eine lichtempfindliche „Tinte“ durch selektive Einstrahlung von UV-Licht schichtweise zu einem dreidimensionalen Objekt geformt wird. Im Vergleich zu anderen Verfahren der additiven Fertigung ermöglicht DLP eine schnelle Herstellung von komplexen Strukturen. „Während die Technologie beispielsweise in der Zahnmedizin bereits erfolgreich eingesetzt wird, war es bislang schwierig, sie für leitfähige Polymere mit Anwendungen im Bereich der Optoelektronik zu nutzen und damit direkt zu drucken“, erläutert Prof. Eva Blasco. Die Wissenschaftlerin forscht mit ihrem Team am Institute for Molecular Systems Engineering and Advanced Materials der Universität Heidelberg zu neuartigen funktionalen Materialien für den 3D-Druck. Durchgeführt wurde das Projekt in enger Kooperation mit Prof. Sabine Ludwigs und ihrer Gruppe am Institut für Polymerchemie der Universität Stuttgart, die Expert*innen für leitfähige Polymere und elektrochemisches Schalten sind.

 

Visualisierung einer 3D-gedruckten Pyramidenstruktur mit elektrochromem Verhalten. Aufgrund der unterschiedlichen Redoxzustände des leitfähigen Materials verändert die Struktur bei elektrochemischer Stimulierung reversibel ihre Farbe.Bild: Universität Stuttgart / GRK 2948 / F. Sterl

Visualisierung einer 3D-gedruckten Pyramidenstruktur mit elektrochromem Verhalten. Aufgrund der unterschiedlichen Redoxzustände des leitfähigen Materials verändert die Struktur bei elektrochemischer Stimulierung reversibel ihre Farbe.
Bild: Universität Stuttgart / GRK 2948 / F. Sterl

Neue „Tinte“ druckt leitfähige 3D-Strukturen, die ihre Farbe ändern

Die beiden Forschungsteams  entwickelten eine neuartige „Tinte“ auf Methacrylatbasis, die redoxaktive Carbazol-Gruppen trägt. Durch diese Redoxeinheiten können solche Materialien in ihrer Polymerkette Elektronen aufnehmen oder abgeben. Dadurch werden sie elektrisch leitfähig und sind in der Lage, in Abhängigkeit von ihrem Oxidations- oder Reduktionszustand die Farbe zu ändern. Im Rahmen der aktuellen Arbeiten ist es den Wissenschaftler*innen gelungen, diese fotoleitende Tintenformulierung für die Herstellung von Strukturen zu nutzen, die auch nach dem Drucken elektrochemisch manipulierbar und damit in ihren Eigenschaften veränderbar bleiben. „Möglich wurde dies durch eine enge, disziplinenübergreifende Zusammenarbeit in unseren Laboren in Heidelberg und Stuttgart“, betonen Christian Delavier und Svenja Bechtold, die im Rahmen des Graduiertenkollegs an ihren Dissertationen arbeiten.

Türöffner für Display-Innovationen oder neue Soft Robotik-Anwendungen

Mit dieser Carbazol-haltigen Tintenformulierung konnten unter anderem zweidimensionale Pixelarrays und Schachbrettmuster sowie eine aus mehreren Schichten bestehende dreidimensionale Pyramide direkt additiv gefertigt werden. Ursprünglich fast transparent, nahmen diese komplexen Strukturen durch elektrochemische Stimulierung erst eine hellgrüne, dann eine dunkelgrüne und schließlich eine fast schwarze Färbung an. „Dieser Prozess ist vollständig umkehrbar und lässt sich je nach Struktur pixelgenau kontrollieren. Besonders spannend ist die Kontrolle in der dritten Dimension, also in Bezug auf die Höhe der Architekturen“, betont Sabine Ludwigs. Die Kombination aus hochauflösendem, lichtbasiertem 3D-Druck mit Redoxpolymeren eröffnet nach Angaben von Prof. Blasco und Prof. Ludwigs neue Möglichkeiten für die additive Fertigung von Pixeldisplays oder auch Aktuatoren für Soft Robotik-Anwendungen, bei denen das Volumen elektrochemisch geschaltet werden kann.

Weitere Informationen:

https://www.ipoc.uni-stuttgart.de

C. Delavier, S. Bechtold, M. H. Dodds, E. Blasco, S. Ludwigs: 3D Digital Light Processing of Redox-Active Polymers for Electrochemical Applications. Advanced Functional Materials (13. November 2025), DOI: 10.1002/adfm.202518546

Speichere in deinen Favoriten diesen Permalink.