Neues Sensorkonzept erhöht die Effizienz von Umformmaschinen

© Fraunhofer IWU/Dirk Hanus Anhand eines Umformpressen-Demonstrators können sich Besuchende live ein Bild über die Funktionsweise des intelligenten Nutensteins machen. Die vom smartNotch übertragenen Prozessdaten werden dabei auf einem angeschlossenen Terminal visualisiert.

© Fraunhofer IWU/Dirk Hanus: Anhand eines Umformpressen-Demonstrators können sich Besuchende live ein Bild über die Funktionsweise des intelligenten Nutensteins machen. Die vom smartNotch übertragenen Prozessdaten werden dabei auf einem angeschlossenen Terminal visualisiert.

Umformpressen sind ein wichtiger, weit verbreiteter Baustein im industriellen Fertigungsprozess. Vom Automobil bis zum Kühlschrank – fast in jedem Produkt sind Umformteile enthalten. Die Anschaffungskosten der Maschinen können zweistellige Millionenbeträge erreichen. Ihre exakte Einrichtung und Justierung nimmt viel Zeit in Anspruch. Bei derart hohen Investitionskosten wünschen sich die Käufer eine lange und effiziente Laufzeit ohne Qualitätsverluste. Auf der Hannover Messe 2022 zeigt der Fraunhofer Cluster of Excellence Cognitive Internet Technologies CCIT, wie sich mithilfe kognitiver Transformation von Industrieprozessen die Effizienz von Umformmaschinen erhöhen lässt (Halle 5, Stand A06). Basis-Technologie ist dabei der intelligente Nutenstein smartNotch. Weiterlesen

Selbstorganisation mit Ecken und Kanten – Polyeder bringen Chancen für neue Materialien

Bildquelle: Leibniz Institut für Neue Materialien

Bildquelle: Leibniz Institut für Neue Materialien

In vielen Prozessen der Natur und der Industrie bilden kleine Objekte geordnete Schichten zwischen Flüssigkeiten und Festkörpern. Gängige Modelle beschreiben die Objekte als Kugeln mit homogenen Oberflächen. Oft sind diese aber nicht kugelförmig, sondern haben abgeflachte Seiten – zum Beispiel, wenn sie aus Metall bestehen. Wissenschaftler des INM – Leibniz-Institut für Neue Materialien in Saarbrücken und der Universität Sydney konnten nun zeigen, dass solche polyedrischen Partikel ganz andere Strukturen bilden als kugelförmige Partikel. Das verändert auch die Eigenschaften von Materialien, die daraus entstehen – und womöglich ihr Recycling. Weiterlesen

Detektion von Wasserstoff durch Glasfasersensoren

© iStock Überschreitet die Wasserstoffkonzentration in der Luft einen Schwellenwert von vier Prozent, was bei ausreichend Druck in einem Wasserstofftank schnell erreicht werden kann, genügt ein einzelner Funken, um eine Explosion auszulösen. Mit Sensoren aus Glasfasern zur Wasserstoffdetektion versuchen Forschende am Fraunhofer HHI dies zu verhindern.

© iStock
Überschreitet die Wasserstoffkonzentration in der Luft einen Schwellenwert von vier Prozent, was bei ausreichend Druck in einem Wasserstofftank schnell erreicht werden kann, genügt ein einzelner Funken, um eine Explosion auszulösen. Mit Sensoren aus Glasfasern zur Wasserstoffdetektion versuchen Forschende am Fraunhofer HHI dies zu verhindern.

Wasserstoff spielt in der deutschen Energie- und Klimapolitik eine zentrale Rolle. Kommt er zum Einsatz, sind Sicherheitsmaßnahmen von entscheidender Bedeutung. Denn im Unterschied zu anderen gasförmigen oder flüssigen Energieträgern besteht bei Wasserstoff neben einer erhöhten Brandgefahr durch Leckagen unter bestimmten Bedingungen auch Explosionsgefahr. Um die Sicherheit im Umgang mit Wasserstoff noch weiter zu erhöhen, arbeiten Forschende am Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI an Glasfaser-basierten Sensoren zu dessen Detektion, die herkömmlichen Sensoren in vielerlei Hinsicht überlegen sind.

Weiterlesen

Licht macht Ionen beweglich

Lithium-Ionen-Akkus, Brennstoffzellen und viele andere Devices sind auf eine gute Beweglichkeit von Ionen angewiesen. Doch dieser steht eine Vielzahl von Hindernissen entgegen. Ein Forschungsteam um Jennifer L. M. Rupp von der Technischen Universität München (TUM) und Harry L. Tuller vom Massachusetts Institute of Technology (MIT) hat nun erstmals gezeigt, dass sich Licht nutzen lässt, um die Beweglichkeit der Ionen zu erhöhen und die Leistung entsprechender Geräte zu verbessern.

Prof. Dr. Jennifer Rupp, Professorin für Chemie der Festkörperelektrolyte in ihrem Labor im Gebäude der Fakultät für Chemie der Technischen Universität München. Bild: Uli Benz / TUM

Prof. Dr. Jennifer Rupp, Professorin für Chemie der Festkörperelektrolyte in ihrem Labor im Gebäude der Fakultät für Chemie der Technischen Universität München.
Bild: Uli Benz / TUM

Weiterlesen

2D-Materialien für die Datenverarbeitung der nächsten Generation

„More Moore“ und „More than Moore“: So bezeichnet werden zwei der wichtigsten Forschungsrichtungen der Halbleiterindustrie. More Moore (mehr Moore) ist ein Ausdruck für die Bemühungen, das „Mooresche Gesetz“ zu verlängern, also das kontinuierliche Streben nach einer Verkleinerung der Transistoren und nach der Integration von mehr, kleineren und schnelleren Transistoren auf jedem Chip des nächsten Produktionsknotens. More than Moore (mehr als Moore) deutet stattdessen auf die Kombination von digitalen und nicht-digitalen Funktionen auf demselben Chip hin, ein Trend, der auch als „CMOS+X“ bekannt ist und der mit dem Aufkommen der 5G-Konnektivität und Anwendungen wie dem Internet der Dinge und dem autonomen Fahren immer wichtiger wird.

Für diese beiden Forschungsrichtungen sind 2D-Materialien eine äußerst vielversprechende Plattform. Ihre ultimative Dünnheit macht sie beispielsweise zu erstklassigen Kandidaten, um Silizium als Kanalmaterial für Nanosheet-Transistoren in zukünftigen Technologieknoten zu ersetzen, was eine fortgesetzte Skalierung der Dimensionen ermöglichen würde. Darüber hinaus lassen sich Bauelemente, die auf 2D-Materialien basieren, prinzipiell gut in die Standard-CMOS-Technologie integrieren und können daher verwendet werden, um die Fähigkeiten von Siliziumchips um zusätzliche Funktionen zu erweitern, wie zum Beispiel bei Sensoren, Photonik oder memristiven Bauelementen für neuromorphes Computing. Dazu haben die RWTH-Wissenschaftler Max C. Lemme und Christoph Stampfer mit Deji Akinwande (University of Texas, Austin, USA) und Cedric Huyghebaert (IMEC, Belgien) nun einen Kommentar in Nature Communications veröffentlicht. Weiterlesen

Kleinste Batterie der Welt kann Computer in Staubkorngröße antreiben

Die kleinste Batterie der Welt ist kleiner als ein Salzkorn und kann in großen Stückzahlen auf einer Wafer-Oberfläche hergestellt werden. Darstellung: TU Chemnitz/Leibniz IFW Dresden

Die kleinste Batterie der Welt ist kleiner als ein Salzkorn und kann in großen Stückzahlen auf einer Wafer-Oberfläche hergestellt werden. Darstellung: TU Chemnitz/Leibniz IFW Dresden

Forschungsteam unter Federführung der TU Chemnitz und unter Beteiligung des IFW Dresden sowie des Changchun Instituts für Angewandte Chemie stellt anwendungsnahe Methode für bisher ungelöstes Problem der Mikroelektronik vor.

 

Computer werden immer kleiner, man denke nur an das Smartphone oder Smartwatches – und der Trend zur Miniaturisierung setzt sich fort. Im Extremfall verlangen winzige smarte mikroelektronische Geräte – sogenannte „Smart-Dust-Anwendungen“ – wie beispielsweise biokompatible Sensoriken im Körper nach noch viel kleineren Computern und Batterien im Submillimeter-Bereich. Das sind Systeme, die kleiner sind als ein Staubkorn. Diese Entwicklung wurde bisher vor allem von zwei Faktoren gebremst – vom Größenunterschied zwischen Mikroelektronik sowie der für einen autonomen Betrieb nötigen Mikrobatterie auf der einen Seite und von der Herstellung einer solchen Batterie nach möglichst platz- und ressourcenschonenden Kriterien auf der anderen Seite. Weiterlesen

„Smarter“ Schleim: wie ein Einzeller zeigt, dass aus Zufall intelligentes Verhalten entstehen kann

© Universität des Saarlandes/Thorsten MohrFrederic Folz mit einem Exemplar von "Physarum polycephalum". Der Schleimpilz hat ihm als Inspiration für ein mathematisches Modell gedient, das zeigt, dass ein gewisses Rauschniveau sinnvoll ist, damit sich der Organismus besser an die Umgebung anpassen kann.

© Universität des Saarlandes/Thorsten Mohr Frederic Folz mit einem Exemplar von „Physarum polycephalum“. Der Schleimpilz hat ihm als Inspiration für ein mathematisches Modell gedient, das zeigt, dass ein gewisses Rauschniveau sinnvoll ist, damit sich der Organismus besser an die Umgebung anpassen kann.

Physarum polycephalum ist ein wahrer Schlaumeier: Mit Experimenten, in denen der Schleimpilz das Schienennetz von Tokio rekonstruieren und Labyrinthe lösen konnte, landete er bereits in den Nachrichten. Nun hat ein Forschungsteam den Pilz als Vorbild herangezogen, um von dessen Anpassungsfähigkeit zu lernen. Das vom ihm inspirierte mathematische Modell ist so allgemein, dass es nicht nur für effizientere Transportnetzwerke sorgen, sondern auch die Künstliche Intelligenz voranbringen könnte. Weiterlesen

Naturfaser-soft-touch-Oberflächen

Nachhaltige Materialentwicklungen ohne Einbußen beim Design und Komfort sind seit einigen Jahren ein wesentlicher Innovationstreiber bei der Herstellung von Verkleidungsteilen im automobilen Innenraum. Sichtbare Naturfaseroberflächen sind ebenso Stand der Technik wie druckelastische Bauteile. Bislang war es aber noch nicht möglich, beides ansprechend miteinander zu kombinieren. Bauteile mit angenehmen soft-touch Eigenschaften sind derzeit noch aus Mehrstoffsystemen mit weichen Zwischenschichten aufgebaut. Letztere können  häufig nur mit erheblichem Kosten- und Energieaufwand gefertigt werden  und deren Materialien (PVC-Slushhäute, isocyanatbasierte Schäume, Abstandgewirke) lassen sich nur schwer recyceln und sind daher mit den Nachhaltigkeitszielen schwer zu vereinbaren.

Im Rahmen eines Forschungsvorhabens hat das Thüringische Institut für Textil- und Kunststoff-Forschung e.V. Prozesse und Materialien untersucht, um ansprechende, druckelastische bzw. soft-touch Oberflächen auf Basis von Naturfaserverbundwerkstoffen zu entwickeln (Abb. 1).

Abb. 1: Materialaufbau

Abb. 1: Materialaufbau

Weiterlesen

Recycling auf Knopfdruck

Mechanische Charakterisierung hybrider Materialien: Ermittlung der Grenzflächeneigenschaften. Amen Ali

Mechanische Charakterisierung hybrider Materialien: Ermittlung der Grenzflächeneigenschaften. (Bildquelle: Amen Ali)

Leichtbaustrukturen müssen hohen Belastungen standhalten. Strukturwerkstoffe wie Aluminium, Stahl oder Verbundwerkstoffe eignen sich hierfür zwar grundsätzlich, jedoch sind hybride Werkstoffe besser an die Belastungen anpassbar. Sie vereinen in sich verschiedene Werkstoffe im Verbund und sind so gestaltet, dass sie sich gegenseitig perfekt unterstützen und ergänzen. Hierzu zählen Laminate aus Metall und Faserverbundwerkstoffen. Das Problem: Ihr Recycling ist extrem schwierig und mit bestehenden Ansätzen kaum zu schaffen. Hybride Werkstoffe für Anwendungsfelder, die besondere Materialeigenschaften erfordern, nachhaltig zu gestalten und bestehende Hybride wiederaufzubereiten – dieser Aufgabe stellen sich Forschende der Universität Augsburg im Kontext des KI-Produktionsnetzwerks. Weiterlesen

Solarzellen ultrahochauflösend drucken

Für den präzisen 3D-Druck hat das Team den 3D-Druck in Atomlagen entwickelt. Die Atome werden dabei einzeln auf die Oberfläche aufgetragen (Grafik: Bachmann).

Für den präzisen 3D-Druck hat das Team den 3D-Druck in Atomlagen entwickelt. Die Atome werden dabei einzeln auf die Oberfläche aufgetragen (Grafik: Bachmann).

Besonders dünne Solarzellen mit einem 3D-Drucker herstellen, aus nachhaltigen Materialien und präzise bis auf den Nanometer: Daran forscht Prof. Dr. Julien Bachmann, Lehrstuhl für Chemistry of Thin Film Materials an der FAU. Für sein Projekt erhält er nun den ERC Proof of Concept Grant. Der ERC Proof of Concept Grant wird an Forschende vergeben, die bereits einen ERC Grant erhalten haben und nun ausloten, wie ihre Ergebnisse in der Praxis ökonomischen oder sozialen Mehrwert bringen können.

In seiner früheren Forschung konnte Prof. Bachmann zeigen, wie die Oberflächenstruktur der Halbleiter auf kleinster Ebene die Effizienz der Solarzellen beeinflusst. Mit einem hochauflösenden 3D-Drucker, der auf 0,000001 Millimeter genau ist, will er nun systematisch austesten, bei welche Oberflächengestaltung der Halbleiter am leistungsfähigsten ist. Für den Einsatz nachhaltiger Materialien im Bereich der erneuerbaren Energien ist diese Optimierung notwendig. Weiterlesen