RadarGlass: Funktionale Dünnschicht-Strukturen für integrierte Radarsensoren

© Fraunhofer ILT, Aachen.
Mit einer elektrisch leitfähigen Dünnschicht für die Abdeckung von Schweinwerfern lassen sich Radarstrahlen gezielt formen und lenken.

Es ist zwar nur ein unscheinbares Stück Papier, doch es handelt sich um einen wichtigen Meilenstein für das autonome Fahren: Die Rede ist von einem Ende 2018 angemeldeten Patent für eine Entwicklung des Verbundprojektes RadarGlass. Das Fraunhofer-Institut für Lasertechnik ILT aus Aachen, das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP aus Dresden und das Institut für Hochfrequenztechnik IHF der RWTH Aachen haben ein Schichtsystem entwickelt, das die Integration von Radarsensoren in PKW-Frontscheinwerfer ermöglicht. Weiterlesen

Hochleistungsplasmen zur Entwicklung dünner Hartstoffschichten für Werkzeuge

Das Institut für Oberflächentechnik (IOT) der RWTH Aachen University ist eine der führenden Forschungsinstitutionen auf dem Gebiet der PVD-Beschichtungstechnologie (Physikalische Gasphasenabscheidung). Die F&E-Gruppe PVD-Technologie (Werkzeuge) beschäftigt sich mit der Erforschung und Applikation von PVD-Dünnschichten für vielfältige Anwendungen. Hierbei setzt sie die am Markt üblichen und industriell eingesetzten Verfahrensvarianten, wie Magnetron Sputtern (MS) mit unterschiedlichen Kammervolumina sowie die neueste Generation von gepulsten Hochleistungsplasmen wie das High-Power-Pulse-Magnetron-Sputtering (HPPMS) und Lichtbogenverdampfen ein. Durch die Forschung an großskaligen, industriellen Anlagen, wie in Abbildung 1 (a) beispielhaft dargestellt, gelingt es, den Bogen zwischen Grundlagenforschung und industrierelevanten Beschichtungsprozessen zu spannen.

Abb. 1: Großskalige, industrielle Beschichtungsanlage des Typs CC800/9-HPPMS der CemeCon AG (a), laserstrukturierte Beschichtung für den Einsatz in der Kunststoffverarbeitung (b), CrN/AlN-Nano laminat (c) und PVD-beschichtete Langlochbohrer (d

Weiterlesen

Hochdruckwasserstrahlen zum flächigen Materialabtrag von hochfesten Werkstoffen erprobt

© Fraunhofer IPT
Demonstratorbauteil, das am Fraunhofer IPT in einer Wasser-Abrasivstrahl-Bearbeitung durch flächiges Abtragen gefertigt wurde.

Beim Fräsen hochfester Werkstoffe wie Oxidkeramik oder Sondermetalle – und besonders bei der Schruppbearbeitung – verschleißen Werkzeuge schnell. Für Unternehmen ist die Bearbeitung dieser Werkstoffe deshalb mit hohen Kosten verbunden. Im Projekt »HydroMill« hat das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen mit seinen Projektpartnern nun gezeigt, dass sich der Hochdruckwasserstrahl zum flächigen Materialabtrag von hochfesten Werkstoffen eignet. War der Einsatz von Wasserstrahlen bislang auf die Schneidbearbeitung beschränkt, zeigen die Projektergebnisse, wie sich hochfeste Werkstoffe kosten- und ressourcenschonender als bisher flächig abtragen lassen. Weiterlesen

Wie beim Regenwurm: Neues atmendes Material schmiert sich bei Bedarf selbst

Quelle: Iris Maurer

Regenwürmer sind immer sauber, selbst wenn sie aus noch so feuchter, klebriger Erde kommen. Das haben sie einer Schmutz abweisenden, gleitfördernden Schmierschicht zu verdanken, die sich auf ihrer Haut immer wieder selbst bildet. Forscher vom INM haben dieses System aus der Natur nun künstlich nachgebaut: Sie entwickelten ein Material mit einer Oberflächenstruktur, die sich selbst und immer dann mit Schmiermittel versorgt, wenn Druck ausgeübt wird. Da das so geschmierte Material reibungsmindernd ist und auch das Aufwachsen von Mikroben verhindert, können sich die Wissenschaftler zahlreiche Anwendungen in der Industrie und Biomedizin vorstellen. Weiterlesen

Prozessabsicherung bei der Entwicklung lackierter Kunststoffteile

Abbildung 1: Durchführung der Chemikalienprüfung am Exterieur-Bauteil

Prüfung der Medienbeständigkeit an lackierten Bauteilen

Die Anforderungen an die Widerstandsfähigkeit einer lackierten Kunststoffoberfläche gegenüber natürlichen und chemischen Substanzen hängen vom vorgesehenen Einsatzgebiet des Bauteils ab. In der Automobilindustrie wird üblicherweise eine Einteilung der durchzuführenden Prüfungen in typische Belastungsarten von Interieur- und Exterieurbauteilen vorgenommen. Interieurkomponenten kommen beispielsweise mit Handschweiß, Sonnencreme sowie mit Getränken (z. B. Coca-Cola, Kaffee, Säfte) in Berührung. Eine Verträglichkeit gegenüber ausgewählten Pflege- und Reinigungsmitteln sollte entsprechend vorliegen. Exterieurkomponenten werden hingegen weitaus mehr Beanspruchungen ausgesetzt. Natürliche Substanzen wie Vogelkot und Baumharze können den Lack angreifen. Im Fahrzeug kommen außerdem Betriebsstoffe wie Kühlerfrostschutzmittel, Konservierungsmittel sowie unterschiedliche Kraftstoffe und Schmiermittel zum Einsatz, die mit den lackierten Oberflächen in Berührung kommen können. Weiterlesen

Schutzschichten für keramische Faserverbundwerkstoffe

Abbildung 1: Bruchfläche eines CMC; Fasern wurden aus dem Gefüge herausgezogen und ermöglichen damit schadenstolerantes Verhalte

Keramische Faserverbundwerkstoffe

Verbundwerkstoffe aus keramischen Fasern umgeben von einer keramischen Matrix werden in der Fachwelt als CMC (Ceramic Matrix Composites) bezeichnet und sind eine sehr junge Werkstoffklasse. Im Vergleich zu metallischen oder polymeren Verbundwerkstoffen, dienen die Fasern in CMC nicht der Erhöhung der Festigkeit oder Steifigkeit, sondern ermöglichen durch den Faser-Pull-Out (Verbrauch von Energie beim Risswachstum) ein quasiduktiles oder auch schadenstolerantes Verhalten (Abbildung 1). Defekte, welche in dichten Hochleistungskeramiken zum katastrophalen Versagen führen würden, werden durch CMC ohne weiteres ertragen und ermöglichen den Einsatz in sicherheitsrelevanten Anwendungen. Weiterlesen

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen

Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel. Die Oberflächen solcher Objekte sind jedoch nie zu hundert Prozent glatt. Selbst Oberflächen, die für das menschliche Auge glatt aussehen, sind meist mikroskopisch rau. Damit das Haften auch auf solchen rauen Oberflächen verlässlich klappt, haben Wissenschaftler am Leibniz-Institut für Neue Materialien eine neue Haftstruktur entwickelt: Darin kombinierten sie harte und weiche Materialien. Sie stellten fest, dass diese Materialkombination deutlich besser auf rauen Oberflächen haftet, als solche Strukturen, die nur aus einem weichen Material gefertigt sind.

Damit lassen sich nicht nur industrielle Handling-Prozesse verbessern und sicherer machen. Die Materialien sind auch vielversprechend für Anwendungen auf der Haut, wie zum Beispiel für selbsthaftende Wundverschlüsse oder sogenannte Wearables – vernetzte Computer, die direkt auf der Haut getragen werden könnten. Weiterlesen

Schützenswerter Oberflächenschutz – ein Plädoyer für galvanische Oberflächen

Ohne Galvanotechnik sähen unser Alltag, unsere Arbeitswelt und unsere Wirtschaft alt aus. Sie verhindert allein in Deutschland Korrosionsschäden in Milliardenhöhe und ist durch nichts zu ersetzen. Doch steigende Auflagen bedrohen die Branche.
(Foto: Dr.-Ing. Max Schlötter GmbH & Co. KG.)

Die Galvano- und Oberflächentechnik durchlebt harte Zeiten: Die an sich gesunde Branche kämpft mit permanenten Anpassungsmaßnahmen infolge zunehmend strengerer Umweltauflagen. Das bindet Ressourcen, die an anderer Stelle, beispielsweise der technischen Weiterentwicklung, sinnvoller investiert wären. Schließlich handelt es sich bei der Galvanotechnik um eine Schlüsselindustrie, deren Bedeutung in allen Wirtschaftsbereichen zunimmt. Sie leistet einen wichtigen Beitrag zur Herstellung technologischer Spitzenerzeugnisse in Deutschland. Denn galvanische Oberflächen bieten Vorteile, die ihresgleichen suchen: höchster Schutz und hochwertige Optik bei dünnen Schichten, geringem Gewicht und niedrigen Kosten. Das macht die Galvanotechnik zu einer rundum nachhaltigen Technologie. Weiterlesen

Farben und Lacke auf Basis von Kartoffelstärke

Soll eine Fläche vor Korrosion geschützt werden, geschieht dies in 80 Prozent aller Fälle durch eine Beschichtung mit Farben oder Lacken. Dabei ist der Anteil biobasierter, umweltfreundlicher Lösungen verschwindend gering. Forschende des Fraunhofer-Instituts für Angewandte Polymerforschung IAP haben sich in Kooperation mit dem Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA dieser Lücke angenommen und entwickeln eine kostengünstige Beschichtung auf Basis nachwachsender Rohstoffe. Im Mittelpunkt der Forschung: Kartoffelstärke.

Klimawandel, endliche Ressourcen, zunehmende Umweltbelastung – in immer mehr Industrien verschiebt sich der Fokus hin zu einer nachhaltigen Produktion. So auch bei der Herstellung von Beschichtungsmitteln wie Farben und Lacken. Denn allein in Deutschland werden jährlich 100 000 Tonnen an Beschichtungsstoffen für den Korrosi­onsschutz produziert. Bisher waren Lacke und Farben mit biobasiertem Bindemittel oder Filmbildner jedoch meist zu teuer oder konnten den Anforderungen nicht stand­halten. Doch durch den Einsatz modifizierter Stärke haben die Wissenschaftler des Fraunhofer IAP einen Weg gefunden, der auch in diesem Bereich nachhaltige und kostengünstige Lösungen erlaubt. Weiterlesen

Verunreinigungen auf 3D-Bauteilen erkennen

© Foto Fraunhofer IPM
Das bildgebende Inline-Messsystem F-Scanner untersucht Bauteile während der Fertigung punktgenau auf Verschmutzungen.

Haften Verunreinigungen auf der Oberfläche von Bauteilen, kann dies den weiteren Produktionsprozess erschweren oder das ganze Bauteil unbrauchbar machen. Ein Fluoreszenzscanner von Fraunhofer IPM ermöglicht erstmals, metallische Bauteile im Fertigungsprozess bildgebend auf Öl, Späne oder Reinigungsmittel zu untersuchen – und jedes einzelne Objekt zu prüfen.

Kleinste Dinge können große Auswirkungen haben: So etwa winzige Schmutzpartikel, die bei der Fertigung von Bauteilen auf ihrer Oberfläche kleben. Beispiel Ölwanne: Sitzen Ölverunreinigungen dort, wo später die Dichtmasse angebracht werden soll, hält die Dichtung an dieser Stelle nicht – die Wanne wird hier wahrscheinlich durchlässig sein. Bisher ist es technisch nicht möglich, alle Bauteile auf Restverschmutzungen zu überprüfen. Es werden lediglich Stichproben genommen, die zum einen zeitintensiv sind, zum anderen keine Aussage darüber ermöglichen, an welcher Stelle der Bauteiloberfläche sich die Verunreinigung befand. Weiterlesen