Neue Verbundwerkstoffe: biobasiert, funktionalisiert und mechanisch hochfest

Amorphes und kristallines Polylactid Granulat.

© Fraunhofer ICT
Amorphes und kristallines Polylactid Granulat.

Die große Bandbreite der Einsatzmöglichkeiten macht klassische Faserverbund-Werkstoffe in der Produktion beliebt – trotz relativ hohem Herstellungs- und Entsorgungsaufwand. Diese Nachteile vermeidet der neue selbstverstärkte Verbundwerkstoff aus Polyactid (PLA), der im Rahmen des Projektes »Bio4self« unter Beteiligung des Fraunhofer-Instituts für Chemische Technologie ICT entwickelt wurde. Er ist biobasiert, leicht zu recyceln und günstiger in der Produktion – ideal für den Einsatz in Sport-, Automobil- und medizinischen Anwendungen. Weiterlesen

Bioplastik aus Abfallfetten

Jährlich werden 450 Millionen Tonnen Plastik weltweit produziert. Ein zaghafter Ansatz, der Plastikplage Herr zu werden, ist PHA. Die drei Buchstaben stehen für Polyhydroxyalkanoate. Es sind Biopolymere und werden als Bioplastik bezeichnet, weil PHA ähnlich thermoplastisch verformbar ist wie Plastik aus fossilen Rohstoffen. „Aber das war es dann auch schon an Gemeinsamkeiten“, sagt Dr.-Ing. Sebastian L. Riedel, der zusammen mit Dr.-Ing. Stefan Junne an der Herstellung von PHA forscht. Und auch Bioplastik ist nicht gleich Bioplastik. „Die Hälfte der zwei Millionen Tonnen Bioplastik, die derzeit pro Jahr weltweit produziert werden, ist biologisch nicht abbaubar und die andere Hälfte teilweise nur schwer“, weiß Riedel. Da ist PHA aus anderem „Schrot und Korn“. Es wird im Wasser und Boden vollständig zu Kohlenstoffdioxid und Wasser abgebaut und ist für die Gesundheit mit keinem Risiko verbunden. Weiterlesen

Zuverlässige Leistungselektronik für die Elektromobilität

Eingebettetes Silizium-Carbid auf dem Weg zur Serienproduktion in der Elektromobilität.

© Volker Mai/Fraunhofer IZM
Eingebettetes Silizium-Carbid auf dem Weg zur Serienproduktion in der Elektromobilität.

Silizium-Carbid wird seit mehreren Jahren in der Forschung als vielversprechendes alternatives Material in der Halbleiter-Branche getestet. Im Projekt SiC Modul wollen Forscherinnen und Forscher des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM gemeinsam mit ihren Partnern den Leistungshalbleiter auf den Weg zur industriellen Fertigung bringen und somit die Effizienz des Antriebssystems von Elektrofahrzeugen und damit auch ihre Reichweite weiter erhöhen. Weiterlesen

Carbonbeton – Schlank, leicht, umweltfreundlich

3D-Visualisierung der entworfenen integralen Überführungsbrücke mit Halbfertigteilen aus vorgespanntem Carbonbeton
© sbp

Einsturzgefahr, Sperrungen, notwendige Investitionen in Milliardenhöhe. Der größte Feind aller großen Brücken weltweit ist Korrosion. In Deutschland gibt es allein 40 000 stolze Fluss- und Autobahnbrücken aus Stahlbeton. Und sehr viele davon haben ihre beste Zeit hinter sich. Gebaut zwischen 1960 und 1985 müssen etwa die Hälfte von ihnen in naher Zukunft ersetzt werden. Der Grund: Durch Schäden, selbst feinste Risse, im Beton dringt Wasser ein und setzt über Jahrzehnte der Stahlbewehrung zu. Die Hoffnung auf Rettung richtet sich deshalb auf einen innovativen Verbundbaustoff, der den Brückenbau revolutionieren soll: Carbonbeton. Nun wurde die weltweit erste integrale vorgespannte Carbonbeton-Brücke zu Forschungszwecken an der TU Berlin aufgebaut. Weiterlesen

Keramik-Werkstoffe spielen Schlüsselrolle

Kager liefert Produkte auf Keramikbasis für Forschungsprojekt zur Elektromobilität  

An vielen deutschen Hochschulen laufen derzeit ambitionierte Forschungsprojekte zur Zukunft der Elektromobilität. Oft geht es dabei um sehr fertigungsnahe Aspekte wie etwa die flexible Herstellung leistungselektronischer Schaltungsträger mittels additiver Druckverfahren. Der Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik an der Friedrich-Alexander-Universität in Erlangen-Nürnberg erhielt beispielsweise im Herbst 2018 grünes Licht für ein neues Forschungsvorhaben zu dieser Thematik. Als Lieferant keramischer Faserprodukte und Klebstoffe ist das Dietzenbacher Industrie-Handelshaus Kager mit eingebunden in dieses Innovationsprojekt. Lesen Sie hier, wie es dazu kam.

Weiterlesen

Zuckerrübenschnitzel – ein neuer faserartiger Bestandteil für Verbundwerkstoff

Abbildung 1 REM Aufnahmen (© Fraunhofer UMSICHT) von Zuckerrübenschnitzelmahlgut (Herkunft: Jäckering Mühlen und Nährmittelwerke GmbH ) mit D50 ~ 250 μm links und ~ 30 μm rechts. Während bei der gröberen Type kompaktierte „Zellhaufen“ nachgewiesen werden können, sind bei der feinen Type im Wesentlichen nur Bruchstücke von Zellen sichtbar.

In dem vom Land Nordrhein-Westfalen und der Europäischen Union geförderten Projekt „Werkstoffentwicklung auf Basis von Rübenschnitzeln für marktrelevante Anwendungen“ beschäftigen sich die Unternehmen Byk-Chemie GmbH, Entex Rust & Mitschke GmbH, FKuR Kunststoffe GmbH, Fraunhofer UMSICHT und Fraunhofer WKI, Harold Scholz & Co. GmbH, Jäckering Mühlen- und Nährmittelwerke GmbH, Kunststoff-Institut für die mittelständische Wirtschaft NRW GmbH, Landwirtschaftlicher Betrieb Koch, Nova-Institut GmbH, Pfeifer & Langen GmbH & Co. KG und SWOBODA engineering GmbH mit der Entwicklung eines neuartigen Verbundwerkstoffes, welcher in erster Linie als Compound für die weitere Kunststoffverarbeitung zur Verfügung gestellt werden soll. Weiterlesen

Neues Material, das Seltene Erden bei LED-Lampen spart

Die LED-Technologie ist derzeit die Beleuchtungstechnik mit dem größten Potenzial für die Zukunft. Mit dem technischen Fortschritt steigt allerdings auch die Belastung für die Materialien, die in einer LED-Lampe verbaut sind. Die transparente Kapsel, die die Leuchtdiode umhüllt, muss zum Beispiel immer höhere Temperaturen aushalten können, gleichzeitig soll die Technologie mit viel weniger der so genannten Seltenen Erden auskommen. Chemiker der Saar-Uni um Professor Guido Kickelbick haben nun mit Partnern aus der Industrie (Osram, BASF) ein Verkapselungsmaterial entwickelt, das LEDs ohne Seltene Erden langlebiger und günstiger machen könnte. Dazu haben sie auch Patente angemeldet. Das Material ist im Rahmen des noch laufenden Forschungsprojektes „Organische und Seltenerd-reduzierte Konversionsmaterialien für LED- basierte Beleuchtung“ (ORCA) entstanden, das vom Bund mit 1,9 Millionen Euro gefördert wird. Weiterlesen

Stärker als Gorilla-Glas

Mit Yttriumdioxid beschichtetes Zirkondioxid. Durch die unterschiedlichen thermischen Eigenschaften der beiden Materialien entsteht beim Erkalten in der Beschichtung eine hohe Druckspannung, durch die die Oberfläche des Bauteils zusammengepresst wird: Die Bildung von Rissen wird so effektiv behindert. Das Bauteil wird so stabiler und seine Oberfläche beständiger gegen Zerkratzen.
Copyright: Forschungszentrum Jülich / Hiltrud Moitroux

Sie sind härter als konventionelles Glas und außerordentlich beständig gegen Hitze und korrosive chemische Substanzen: transparente Keramiken gelten daher als vielversprechende Alternative zu glasbasierten Werkstoffen. Wie alle Keramiken sind sie jedoch sehr anfällig für Brüche. Jülicher Wissenschaftler forschen deshalb an einem innovativen Beschichtungsverfahren, das gezielt die mechanischen und optischen Eigenschaften transparenter Keramiken verbessern kann. Damit gelang es ihnen den Bruchwiderstand der Keramiken zu verdoppeln.

Durch ihre besondere Stabilität können transparente Keramiken in Bereichen genutzt werden, in denen herkömmliches Glas an seine Grenzen stößt, etwa in der Industrie als kratz- und hitzebeständige Sichtfenster in Hochtemperaturöfen. Da sie zudem für kurz- und langwellige Strahlung durchlässig sind, eignen sie sich gut für Linsen in der Ultraviolett-Lithografie oder Sensoren für Infrarot-Bildgebung. Sie sind außerdem interessant für Kameras und Smartphones – als Material für optische Linsen. Durch ihren hohen Brechungsindex sind sie in der Lage, das Licht stärker zu bündeln. Solche Linsen können dadurch dünner ausgeführt werden, wodurch sich Kamerakomponenten leichter miniaturisieren ließen. Weiterlesen

Digitaler Zwilling für Werkstoffe

© Fraunhofer IWM
Mit dem Datenraumkonzept Werkstoffinformationen jeglicher Art in digitale Netze integrieren – eine wichtige Basis für die Produktion im Rahmen der Industrie 4.0.

Sollen Produktionssysteme digital vernetzt und im laufenden Betrieb werkstoffgerecht verbessert werden, müssen dafür auch die Veränderungen der Werkstoffe gemessen, analysiert und abgebildet werden – im sogenannten »digitalen Materialzwilling«. Fraunhofer-Forscherinnen und -Forscher haben mit einem Werkstoffdatenraum die Grundlage hierfür geschaffen.

Rollt ein fertiges Bauteil vom Band, ist eine Frage von großem Interesse: Hat das Bauteil die gewünschten Eigenschaften? Denn oftmals reichen bereits kleinste Schwankungen in der Produktion, um Materialeigenschaften zu verändern und damit die Bauteilfunktionalität in Frage zu stellen. Um dies zu vermeiden, werden begleitend zur Produktion immer wieder Proben entnommen und aufs Genaueste untersucht. Ein solches Probenbauteil muss für Versuche in kleine Einzelteile zerlegt und vermessen werden – das benötigt viel Zeit. »Die Geschichte einer Probe verzweigt sich also in viele kleine Äste mit jeweils spezifischen Messergebnissen«, erläutert Dr. Christoph Schweizer, Leiter des Geschäftsfelds Werkstoffbewertung, Lebensdauerkonzepte am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg. »Expertinnen und Experten haben diese Zusammenhänge im Kopf, allerdings gab es bisher keine Möglichkeit, die resultierende, in unterschiedlichen Formaten vorliegende Datenvielfalt zusammenhängend digital abzubilden.« Weiterlesen

Keramiken aus dem „Sand“ des roten Planeten

Vasen, Ringe und Tabletten aus Marskeramik in unterschiedlichen Brennstadien
© TU Berlin/David Karl

Wissenschaftler des Fachgebiets Keramische Werkstoffe an der TU Berlin haben in Kooperation mit der Bundesanstalt für Materialforschung und -prüfung erstmals komplexe Bauteile aus simuliertem Marsboden gefertigt und die theoretische Möglichkeit gezeigt, stabile Gefäße wie Vasen nur mit Ressourcen des roten Planeten zu fertigen. Mit ihrem Ansatz möchten die Wissenschaftler einen Beitrag für die Forschungen zur Langzeiterkundung des roten Planeten leisten.

Die Ziele sind ambitioniert: In den 2030er-Jahren plant die US-amerikanische Raumfahrtbehörde NASA mit ihren internationalen Partnerinnen und Partnern den ersten bemannten Flug zum Planeten Mars – eine Reise in die Tiefen des Weltalls, die von Forscherinnen und Forschern weltweit begleitet wird. Ein Team der TU Berlin vom Fachgebiet Keramische Werkstoffe am Institut für Werkstoffwissenschaften und -technologien der Fakultät III Prozesswissenschaften befasst sich ebenfalls mit Experimenten, die eine mögliche Reise zum roten Planeten in den Fokus stellen. Weiterlesen