Klimafreundliche Kunststoffe für den industriellen 3D-Druck

Mit den Polymer Werkstoffen PA 1101 ClimateNeutral und PA 2200 CarbonReduced von EOS können Unternehmen die Treibhausgasemissionen reduzieren.

Die hervorragenden Eigenschaften der EOS PA 11 und PA 12 Werkstoffe führen zu einer großen Nachfrage dieser für den Plastik 3D-Druck. Eine CO2-reduzierte und sogar klimaneutrale Version davon anbieten zu können, unterstützt Unternehmen dabei, ihre Nachhaltigkeitsziele zu erreichen. Gleichzeitig können sie auf die bewährte Teilequalität und Materialeigenschaften vertrauen.

Mehr erfahren

Erstklassige Beratung, erstklassige Werkzeuge. Für eine kostenreduzierte Nachbearbeitung im 3D-Druck mit LUKAS-ERZETT.

Als einer der technologisch führenden Hersteller und anerkannter Spezialist für innovative, leistungsstarke Werkzeuge und Sonderlösungen setzt LUKAS-ERZETT seit über 80 Jahren immer wieder neue Maßstäbe. Durch kompetente Beratung und anwendungsorientierte Werkzeuge. Damit die qualitativ hochwertige, mitunter sehr aufwändige Nachbearbeitung von 3D-Druck-Erzeugnissen schneller, präziser und effizienter von der Hand geht.

LUKAS-WERKZEUGE ZUR 3D-DRUCK-NACHBEARBEITUNG.

3D-Druck: Neue Möglichkeiten, neue Herausforderungen

Ganz gleich ob Stereolithographie oder die unterschiedlichen Freiraum- und Pulverbettverfahren: die additive Fertigung hat bereits in vielen Bereichen und Branchen der Industrie Einzug gehalten und entwickelt sich stetig weiter. Und: Der 3D-Druck gibt Unternehmen und Entwicklern die Freiheit, Formen zu kreieren, die mit konventionellen Fertigungsmethoden niemals realisiert werden können. Beim Bau von Anschauungs- und Funktionsprototypen, für Klein- und Mittelserien und auch zunehmend in der umfangreichen Serienfertigung. Auch deshalb, weil die Bauteile aus unterschiedlichsten Metallen, Kunststoffen und Verbundwerkstoffen aber auch aus Keramik und weiteren Materialien hergestellt werden können. Weiterlesen

Prüfung additiv gefertigter Schaumwerkstoffe

Prüfung additiv gefertigter Schaumwerkstoffe

Bildquelle: Hegewald & Peschke Meß- und Prüftechnik GmbH

Additive Fertigungsverfahren bieten einen beeindruckenden Gestaltungsfreiraum. Basierend auf dreidimensionalen Daten werden dabei viele Lagen feinen Materials übereinandergeschichtet.

Anfangs in erster Linie im Bereich von Kunststoffen im Einsatz, gewinnt die additive Fertigung zunehmend auch in der Metallbranche an Bedeutung.

Mit den Universalprüfmaschinen der inspekt-Serie bietet Hegewald & Peschke optimal abgestimmte Prüfsysteme zur Prüfung additiv gefertigter Komponenten und Schaumwerkstoffe. Dabei können sowohl die Eigenschaften der Materialien als auch der Porenstrukturen der Schäume untersucht werden. Während für Kunststoffschäume eher Kleinlastprüfmaschinen im Bereich 5 oder 10 kN relevant sind, werden Metallschaumstrukturen in der Regel mit Prüfmaschinen bis zu einer Maximallast von 100 kN bzw. sogar 250 kN untersucht. Weiterlesen

Innovative Werkstoffherstellung für das Polymer Laser Sintern – Teil 2

Das Polymer Laser Sintern wird zu den additiven Fertigungsverfahren gezählt und erfreut sich aufgrund kurzer Produktzyklen und hoher Freiheitsgrade in der Fertigung immer größerer Beliebtheit. Die breitere Anwendung des Verfahrens wird unter anderem noch durch eine begrenzte Materialauswahl behindert, welche auf hohe Anforderungen und das Fehlen passender Herstellungsprozesse zurückzuführen ist. Im zweiten Teil dieses Artikels werden zwei experimentelle Herstellungsverfahren aus der aktuellen Forschung an der Universität Paderborn vorgestellt, welche das Potenzial bieten, die bisherigen Restriktionen zu beseitigen.

Im ersten Teil des Artikels wurde die kryogene Vermahlung als ein bereits etabliertes Verfahren zur Herstellung von SLS-Materialien vorgestellt, obwohl lediglich scharfkantige Partikeln und somit Pulver mit i.d.R. schlechten Fließeigenschaften erzeugt werden können. Um die Fließeigenschaften in einem nachgelagerten Schritt zu verbessern, werden an der Universität Paderborn die thermische Verrundung und die mechanische Verrundung tiefergehend untersucht. Bei der thermischen Verrundung in der Gasphase werden die Partikeln in einem vertikal beheizten Reaktor teilweise aufgeschmolzen und erhöhen aufgrund der geringeren Oberflächenspannung ihre Sphärizität, welche sie in der Erstarrungsphase beibehalten. Aktuelle Anlagen zur thermischen Verrundung liefern allerdings nicht nur eine geringe Ausbeute, sondern sind auch mit hohem Energieverbrauch verbunden, weshalb intensiver Forschungsbedarf besteht, um das Verfahren für die Massenproduktion weiterzuentwickeln. Weiterlesen

Innovative Werkstoffherstellung für das Polymer Laser Sintern – Teil 1

Unter Berücksichtigung von Lieferkettenstörungen und immer kürzeren Produktzyklen sowie einem fortschreitenden Trend zur Individualisierung, gewinnt die Additive Fertigung immer mehr an Bedeutung. Der Polymer-3D-Druck mittels Pulverbettverfahren (SLS) hat sich dabei kontinuierlich vom Prototypenbau hin zu einer Standardfertigungsmethode für Kleinserien, Ersatzteile und Individualbauten in vielen Branchen entwickelt. In diesem zweiteiligen Artikel soll zunächst auf die Anforderungen an SLS-Materialien eingegangen und konventionelle Herstellungsverfahren beschrieben werden. Der zweite Teil beschäftigt sich mit den Chancen und Möglichkeiten experimenteller Herstellungsmethoden welche momentan an der Universität Paderborn erforscht werden.

Vorreiter in der Industrialisierung der Additiven Fertigung ist das Polymer Laser Sinter (LS) Verfahren, auch Selektives Laser Sintern (SLS) genannt, bei dem eine dünne, teilkristalline Polymerpulverschicht auf einer Bauplattform aufgetragen, anschließend bis kurz unter die Schmelztemperatur vorgeheizt und selektiv mit einem Laser entsprechend der Bauteilschichtinformation verschmolzen wird (Abbildung 1). Nach dem Absenken der Bauplattform um eine Schicht wiederholt sich der Vorgang so lange, bis der Baujob abgeschlossen ist und die fertigen Bauteile im sogenannten Pulverkuchen abkühlen können. Typischerweise folgen noch weitere Nachbearbeitungsschritte wie grob und fein Entpulvern, glätten oder färben.

Abbildung 1: Lasersinterprozess von der CAD Datei bis zum fertigen Bauteil im Pulverkuchen

Abbildung 1: Lasersinterprozess von der CAD Datei bis zum fertigen Bauteil im Pulverkuchen

Weiterlesen

Additive Fertigung – durchgängig simuliert

 © Fraunhofer IWMSimulation der Entstehung einer kolumnaren Mikrostruktur im Laser-Schmelzbad

© Fraunhofer IWM
Simulation der Entstehung einer kolumnaren Mikrostruktur im Laser-Schmelzbad

Die additive Herstellung von Werkzeugen mit pulverbettbasiertem Laserstrahlschmelzen »Laser Powder Bed Fusion« bietet zahlreiche Vorteile, sie ist wirtschaftlich, präzise und ermöglicht individuelle Lösungen. Doch ist es mitunter schwierig, die optimalen Prozessparameter, wie die Geschwindigkeit oder die Leistung des Lasers, zu bestimmen. Fraunhofer-Forschende simulieren erstmalig den Prozess auf der Mikrostrukturskala, um direkte Zusammenhänge zwischen Werkstückeigenschaften und gewählten Prozessparametern erkennen. Dafür kombinieren sie verschiedene Simulationsmethoden miteinander. Weiterlesen

Blitzschnelles 3D-Mikrodrucken mit zwei Lasern

Forschende des Exzellenzclusters „3D Matter Made to Order“ drucken Mikrostrukturen durch Kreuzen roter und blauer Laserstrahlen

Beim 3D-Lichtblattdruck werden mit rotem und blauem Laserlicht präzise und schnell Objekte im Mikrometermaßstab gedruckt (Foto: Vincent Hahn, KIT)

Beim 3D-Lichtblattdruck werden mit rotem und blauem Laserlicht präzise und schnell Objekte im Mikrometermaßstab gedruckt (Foto: Vincent Hahn, KIT)

Objekte aus Kunststoff präzise, schnell und kostengünstig zu drucken, ist das Ziel vieler 3D-Druckverfahren. Geschwindigkeit und hohe Auflösung sind jedoch nach wie vor eine technologische Herausforderung. Ein Forschungsteam des Karlsruher Instituts für Technologie (KIT), der Universität Heidelberg und der Queensland University of Technology (QUT) ist diesem Ziel ein großes Stück nähergekommen. Es entwickelte ein Laserdruckverfahren, mit dem mikrometergroße Teile innerhalb eines Wimpernschlags gedruckt werden können. Weiterlesen

Additive Fertigung im Flug

 Drohnen als 3D-Drucker: Mit einem Schwarm solcher selbständig fliegender Roboter hat eine internationalen Forschungsgruppe Strukturen aus Zement gedruckt. Ein Team um Stefan Leutenegger, Professor für Machine Learning in Robotics an der TUM, hat dafür gesorgt, dass die Drohnen die notwendigen präzisen Flugmanöver ausführen konnten.

Drohnen als 3D-Drucker: Mit einem Schwarm solcher selbständig fliegender Roboter hat eine internationalen Forschungsgruppe Strukturen aus Zement gedruckt. Ein Team um Stefan Leutenegger, Professor für Machine Learning in Robotics an der TUM, hat dafür gesorgt, dass die Drohnen die notwendigen präzisen Flugmanöver ausführen konnten. (Bildquelle: Vijay M. Pawar & Robert Stuart-Smith / University College London, Department of Computer Science, London.)

Ein internationales Forschungsteam hat fliegende 3D-Drucker entwickelt, die kooperativ Strukturen bauen und reparieren können. Die Inspiration für das Projekt liefern Bienen und Wespen. Die Technologie könnte in Zukunft für Konstruktionsmaßnahmen an schwer zugänglichen oder gefährlichen Orten, etwa an hohen Gebäuden, zum Einsatz kommen, so die Forschenden.

3D-Druck gewinnt in der Bauindustrie zunehmend an Bedeutung. Sowohl auf Baustellen als auch in Fabriken drucken stationäre und mobile Roboter Strukturen für den Einsatz in Bauprojekten, beispielsweise aus Stahl oder Beton. Im Fachmagazin „Nature“ beschreibt ein internationales Forschungsteam das Projekt „Aerial Additive Manufacturing (Aerial-AM)“. Dieser neue Ansatz für den 3D-Druck mit fliegenden Robotern, die kooperativ arbeiten, ist von Baumeistern aus der Natur wie Bienen und Wespen inspiriert. Weiterlesen

Erstklassige Beratung, erstklassige Werkzeuge.

Für eine kostenreduzierte Nachbearbeitung im 3D-Druck mit LUKAS-ERZETT

Als einer der technologisch führenden Hersteller und anerkannter Spezialist für innovative, leistungsstarke Werkzeuge und Sonderlösungen setzt LUKAS-ERZETT seit über 80 Jahren immer wieder neue Maßstäbe. Durch kompetente Beratung und anwendungsorientierte Werkzeuge. Damit die qualitativ hochwertige, mitunter sehr aufwändige Nachbearbeitung von 3D-Druck-Erzeugnissen schneller, präziser und effizienter von der Hand geht.

Weiterlesen

3D-Druck von Stelliten gelungen

Bild 1: Gefüge von 3D-gedrucktem Stellite Celsit 21, geätzt mit Murakami (Fem18)

Bild 1: Gefüge von 3D-gedrucktem Stellite Celsit 21, geätzt mit Murakami (Fem18)

Stellite als Verschleißschutzlegierungen aus Kobalt, Chrom, Wolfram oder Molybdän, Nickel, Eisen und 0,3 bis 3,2 % Kohlenstoff haben sich einen festen Platz in der Technik gesichert. Erzeugt werden sie durch Gießen, Sintern oder als Beschichtung durch verschiedene Schweiß- oder Strahlverfahren. So besitzen Stellite bei Beanspruchungen auf abrasiven, adhäsiven und korrosiven Verschleiß Eigenschaften, die sie für eine Reihe von anspruchsvollen Anwendungen interessant machen. Durch die bisherigen Fertigungsverfahren war es nicht möglich, filigrane Strukturen wie oberflächennahe Kühlkanäle oder Ähnliches zu realisieren.

In einem gemeinsamen Forschungsprojekt des Instituts für Werkzeugforschung und Werkstoffe Remscheid (IFW) und dem Institut für Umformtechnik und Umformmaschinen der Leibniz-Universität Hannover (IFUM) ist es den Remscheider Mitarbeiter*innen gelungen, Stellitepulver für das selektive Laserstrahlschmelzen (LPBF/SLM) zu qualifizieren. Genutzt wurden Pulver der Deutschen Edelstahlwerke (DEW) vom Typ Celsit 21 und Celsit F. Dabei war es möglich, Celsit 21 ohne Vorwärmung mit einer Härte von 42 HRC und einer relativen Dichte von > 99,75 % zu drucken. Weiterlesen