Erstklassige Beratung, erstklassige Werkzeuge.

Für eine kostenreduzierte Nachbearbeitung im 3D-Druck mit LUKAS-ERZETT

Als einer der technologisch führenden Hersteller und anerkannter Spezialist für innovative, leistungsstarke Werkzeuge und Sonderlösungen setzt LUKAS-ERZETT seit über 80 Jahren immer wieder neue Maßstäbe. Durch kompetente Beratung und anwendungsorientierte Werkzeuge. Damit die qualitativ hochwertige, mitunter sehr aufwändige Nachbearbeitung von 3D-Druck-Erzeugnissen schneller, präziser und effizienter von der Hand geht.

Weiterlesen

3D-Druck von Stelliten gelungen

Bild 1: Gefüge von 3D-gedrucktem Stellite Celsit 21, geätzt mit Murakami (Fem18)

Bild 1: Gefüge von 3D-gedrucktem Stellite Celsit 21, geätzt mit Murakami (Fem18)

Stellite als Verschleißschutzlegierungen aus Kobalt, Chrom, Wolfram oder Molybdän, Nickel, Eisen und 0,3 bis 3,2 % Kohlenstoff haben sich einen festen Platz in der Technik gesichert. Erzeugt werden sie durch Gießen, Sintern oder als Beschichtung durch verschiedene Schweiß- oder Strahlverfahren. So besitzen Stellite bei Beanspruchungen auf abrasiven, adhäsiven und korrosiven Verschleiß Eigenschaften, die sie für eine Reihe von anspruchsvollen Anwendungen interessant machen. Durch die bisherigen Fertigungsverfahren war es nicht möglich, filigrane Strukturen wie oberflächennahe Kühlkanäle oder Ähnliches zu realisieren.

In einem gemeinsamen Forschungsprojekt des Instituts für Werkzeugforschung und Werkstoffe Remscheid (IFW) und dem Institut für Umformtechnik und Umformmaschinen der Leibniz-Universität Hannover (IFUM) ist es den Remscheider Mitarbeiter*innen gelungen, Stellitepulver für das selektive Laserstrahlschmelzen (LPBF/SLM) zu qualifizieren. Genutzt wurden Pulver der Deutschen Edelstahlwerke (DEW) vom Typ Celsit 21 und Celsit F. Dabei war es möglich, Celsit 21 ohne Vorwärmung mit einer Härte von 42 HRC und einer relativen Dichte von > 99,75 % zu drucken. Weiterlesen

Additiv gefertigte Batterien

Dr. Heike Brandt, Dr. Ramona Langner, Dr. Diana Freudendahl

Im Bereich der Energiespeicher ist seit geraumer Zeit eine enorme Dynamik bei der Entwicklung neuer Konzepte und Speichermaterialien zu beobachten, da sich der generelle Trend zur Miniaturisierung von drahtlosen Sensoren, Aktoren sowie zur Nutzung aktiver Transponder zur Radiofrequenz-Identifikation fortsetzt. Außerdem setzt sich langsam die Elektrifizierung unterschiedlichster, auch großer und schwerer Verkehrsmittel durch.

Der Aspekt der additiven Fertigung, auch als 3D-Druck bezeichnet, als mögliche Methode zur Produktion von Energiespeichern ist vergleichsweise neu. Der Schwerpunkt dieser Bemühungen liegt bei den sekundären Batteriesystemen, auch Akkumulatoren genannt, die wieder aufgeladen werden können, sowie primären Batteriesystemen, die nicht für eine Aufladung vorgesehen sind. Weiterlesen

Randschichthärtung additiv gefertigter nichtrostender Edelstähle mit HARD-INOX-S®

Die additive Fertigung hat sich in den vergangenen Jahren rasant entwickelt als innovatives Verfahren, oft bionisch inspirierte Bauteile werkzeuglos zu fertigen.

Besonders weit verbreitet haben sich die Laser-Pulverbettverfahren (LPBF – Laser Powder Bed Fusion; oft auch Selective Laser Melting oder Laser Cusing® genannt), bei denen wiederkehrend dünne Pulverschichten lokal mit einem Laser aufgeschmolzen werden und so Schicht für Schicht, dem dreidimensionalen CAD-Design und geeigneter Anlagensteuerung folgend, Komponenten erzeugt werden (Abb. 1). Die qualitätsbestimmenden Parameter des Bauprozesses wurden eingehend untersucht und auch die mikrostrukturellen Eigenschaften sowie die makroskopischen Geometriegrößen, hier besonders der Verzug, umfangreich untersucht.

Abb. 1: Verfahrensschema des Laser Powder Bed Fusion Prozesses (LPBF)

Abb. 1: Verfahrensschema des Laser Powder Bed Fusion Prozesses (LPBF)

Weiterlesen

Solarzellen ultrahochauflösend drucken

Für den präzisen 3D-Druck hat das Team den 3D-Druck in Atomlagen entwickelt. Die Atome werden dabei einzeln auf die Oberfläche aufgetragen (Grafik: Bachmann).

Für den präzisen 3D-Druck hat das Team den 3D-Druck in Atomlagen entwickelt. Die Atome werden dabei einzeln auf die Oberfläche aufgetragen (Grafik: Bachmann).

Besonders dünne Solarzellen mit einem 3D-Drucker herstellen, aus nachhaltigen Materialien und präzise bis auf den Nanometer: Daran forscht Prof. Dr. Julien Bachmann, Lehrstuhl für Chemistry of Thin Film Materials an der FAU. Für sein Projekt erhält er nun den ERC Proof of Concept Grant. Der ERC Proof of Concept Grant wird an Forschende vergeben, die bereits einen ERC Grant erhalten haben und nun ausloten, wie ihre Ergebnisse in der Praxis ökonomischen oder sozialen Mehrwert bringen können.

In seiner früheren Forschung konnte Prof. Bachmann zeigen, wie die Oberflächenstruktur der Halbleiter auf kleinster Ebene die Effizienz der Solarzellen beeinflusst. Mit einem hochauflösenden 3D-Drucker, der auf 0,000001 Millimeter genau ist, will er nun systematisch austesten, bei welche Oberflächengestaltung der Halbleiter am leistungsfähigsten ist. Für den Einsatz nachhaltiger Materialien im Bereich der erneuerbaren Energien ist diese Optimierung notwendig. Weiterlesen

3-D-Laser-Nanodrucker als kleines Tischgerät

Elektronenmikroskopische Rekonstruktion einer 3-D-Nanostruktur, die mit dem Zwei-Stufen-Verfahren gedruckt wurde (links) sowie lichtmikroskopische Aufnahme (rechts) (Foto: Professor Rasmus Schröder, Universität Heidelberg, Vincent Hahn, KIT)

Elektronenmikroskopische Rekonstruktion einer 3-D-Nanostruktur, die mit dem Zwei-Stufen-Verfahren gedruckt wurde (links) sowie lichtmikroskopische Aufnahme (rechts) (Foto: Professor Rasmus Schröder, Universität Heidelberg, Vincent Hahn, KIT)

Die Laser in heutigen Laserdruckern für Papierausdrucke sind winzig klein. Bei 3-D-Laserdruckern, die dreidimensionale Mikro- und Nanostrukturen drucken, sind dagegen bisher große und kostspielige Lasersysteme notwendig. Forschende am Karlsruher Institut für Technologie (KIT) und an der Universität Heidelberg nutzen nun stattdessen ein anderes Verfahren. Die Zwei-Stufen-Absorption funktioniert mit winzig kleinen blauen Laserdioden, die kostengünstig sind. Dadurch ist es möglich, mit weitaus kleineren Druckern zu arbeiten. Weiterlesen

LUKAS-ERZETT – NEXT LEVEL 3D-DRUCK

Die additive Fertigung – oder auch 3D-Druck – bietet Entwicklern die Freiheit, Formen zu kreieren, die mit konventionellen Fertigungsmethoden nur schwer hergestellt werden können

Die additive Fertigung – oder auch 3D-Druck – bietet Entwicklern die Freiheit, Formen zu kreieren, die mit konventionellen Fertigungsmethoden nur schwer hergestellt werden können

Der 3D-Druck, auch additive Fertigung genannt, hat bereits in vielen Bereichen und Branchen der Industrie Einzug gehalten und entwickelt sich stetig weiter. Das Verfahren gibt Unternehmen und Entwicklern die Freiheit, Formen zu kreieren, die mit konventionellen Fertigungsmethoden niemals hätten hergestellt werden können. Unterstützt wird dieser Trend durch eine stetig wachsende Vielzahl an zur Verfügung stehenden Materialien, Verfahren und Maschinen, die an die Bedürfnisse einer Serienfertigung angepasst sind. Beim Bau von Anschauungs- und Funktionsprototypen, Klein- und Mittelserien und auch zunehmend in der umfangreichen Serienfertigung überzeugt dieses innovative und materialschonende Herstellungsverfahren mit Vorteilen, die konventionelle Fertigungstechnologien nicht haben. Und so hat die additive Fertigung längst den Sprung aus der Garage des Hobbybastlers hinein in die Produktionshallen international tätiger Konzerne geschafft. Weiterlesen

Vom Pulver zum additiv hergestellten Bauteil – Teil 2: Potenziale durch Pulvermischungen

Pulvermetallurgische Verarbeitung von Pulvermischungen

Pulvermischungen werden in der konventionellen Pulvermetallurgie (PM) beim Matrizenpressen von Formteilen standardmäßig eingesetzt. Beim herkömmlichen Pressen und Sintern von Eisen- und Stahlpulvern werden Legierungszuschläge mit einem gut pressbaren Grundpulver gemischt. Die Legierungszuschläge können als Elementarpulver oder sog. „Meisterlegierung“ zugesetzt werden. Meisterlegierungen enthalten die Legierungselemente in den gewünschten Verhältnissen und vermeiden so das Mischen von Vielkomponentenwerkstoffen. Die Partikelgröße der Zusätze ist abhängig von der Legierungsart. Nicht aufschmelzende Elemente werden in Form feiner Pulver zugemischt, um beim Sintern eine homogene Durchmischung mittels Festkörperdiffusion zu erreichen. Aufschmelzende Partikel können in gröberer Form zugemischt werden, da sich die Schmelze vor den Diffusionsprozessen gleichmäßig im Bauteil verteilt. Aus Pulvermischungen verschiedener Korngrößen und Dichten ergeben sich auch stets Entmischungsproblematiken. In der konventionellen Pulvermetallurgie wird daher zum Teil über ein vorgelagertes Diffusionsglühen feines Pulver an das Grundpulver angesintert oder es werden organische Bindemittel verwendet, um feines Pulver an das Grundpulver zu kleben. Organische Hilfsmittel werden nach dem Formgebungsprozess durch Sintern thermisch entfernt. [1] Weiterlesen

Elektronenstrahlschmelzen bringt sprödes Metall in Form

Bauteil aus Wolfram, hergestellt im 3D-Druck mit dem Verfahren des Elektronenstrahlschmelzens (Foto: Markus Breig, KIT)

Bauteil aus Wolfram, hergestellt im 3D-Druck mit dem Verfahren des Elektronenstrahlschmelzens (Foto: Markus Breig, KIT)

Forschenden des KIT ist es erstmals gelungen, Bauteile aus Wolfram für den Einsatz im Hochtemperaturbereich im 3D-Druck-Verfahren Elektronenstrahlschmelzen herzustellen.

Wolfram hat mit 3.422 Grad Celsius den höchsten Schmelzpunkt aller Metalle. Ideal für den Einsatz dort, wo es richtig heiß wird, etwa für Weltraumraketendüsen, Heizelemente von Hochtemperaturöfen oder im Fusionsreaktor. Das Metall ist aber zugleich sehr spröde und daher schwer zu verarbeiten. Forschende des Karlsruher Instituts für Technologie (KIT) fanden nun einen innovativen Ansatz, wie sie „den Spröden geschmeidig machen“: Sie entwickelten für das Verfahren des Elektronenstrahlschmelzens neue Prozessparameter, um damit auch Wolfram verarbeiten zu können. Weiterlesen

Vom Pulver zum additiv hergestellten Bauteil

Teil 1: Perspektiven durch heiß-isostatisches Pressen

Pulvermetallurgische Herstellung

Pulvermetallurgisch hergestellte Bauteile (PM) sind im Bereich des Motorenbaus, bei Getriebeteilen sowie im Werkzeug- oder Formenbau etabliert. Beim konventionellen Pressen und Sintern werden wasserverdüste, spratzige Metallpulver mit Additiven und weiteren Legierungselementen gemischt und in Pressformen zu Grünkörpern verdichtet, die bereits annähernd die endgültige Form aufweisen (near netshape). Während der Festphasensinterung unter Vakuum, Inertgas oder reduzierenden Atmosphären verbinden sich die Pulverpartikel durch Diffusion und stellen das Gefüge und die mechanischen Eigenschaften ein. Pressen und Sintern wird als ein kostengünstiges Herstellungsverfahren für hohe Stückzahlen eingesetzt. Auch der Metallpulverspritzguss (MIM) ermöglicht Serienfertigung, typischerweise jedoch für kleine, komplex geformte Teile mit hoher Oberflächengüte und Maßhaltigkeit. Sehr feine Metallpulver werden mit thermoplastischen Bindern versetzt und unter erhöhten Temperaturen und hohem Druck in Spritzgusswerkzeuge gepresst. Die Grünteile werden thermisch oder chemisch entbindert und unter starker Sinterschwindung gesintert. Für Anwendungen, die herausragende mechanische Eigenschaften oder harte Werkstoffe erfordern, die durch Spanen, Schmieden oder Gießen nicht verarbeitet werden können, wird auf das Verfahren des heiß-isostatischen Pressens (HIP) zurückgegriffen. Kapseln, welche die Bauteilgeometrie abbilden, werden hierbei aus Stahlblech geschweißt, mit sphärischem, gasverdüstem Metallpulver gefüllt, evakuiert, verschlossen und bei hohen Temperaturen und Drücken zu voller Dichte konsolidiert. Zuletzt wird die Kapsel, die nur als Hilfsmittel zur Verdichtung genutzt wurde, entfernt. Weiterlesen