Metallmäntel optimieren chemische Reaktionen

g_6_fk07_2015_MetallmДntel optimieren chemische Reaktionen

Schüttgut ist Massenware in der chemischen Industrie. Das Fraunhofer IKTS schützt die millimetergroßen Partikel jetzt mit einem Metallmantel. Das erhöht ihre Wärmeleitfähigkeit um das Fünffache. © Fraunhofer IKTS

Für die chemische Industrie sind sie Massenware: Aufgeschüttete Füllkörper, die als Katalysator oder Adsorptionsmittel in Reaktoren und Wärmespeichern eingesetzt werden. Fraunhofer-Forscher entwickelten einen Metallmantel für die einzelnen Füllkörper, der ihre Wärmeleitfähigkeit um das Fünffache erhöht.

Viele chemische Reaktionen und Wärmespeicher nutzen aufgeschüttete Füllkörper als Katalysator oder Adsorptionsmittel. Die Industrie setzt mehrere Millionen Tonnen dieser Funktionsmaterialien im Jahr ein, um ihre Grundstoffe herzustellen. Damit die Reaktionen wie gewünscht ablaufen, müssen die Füllkörper besonders wärmeleitfähig sein. Das Problem: Zwischen den nur wenigen Millimeter großen Körpern lässt sich die Wärme nicht optimal weiterleiten. Die Chemieunternehmen müssen daher zusätzliche wärmeleitende Strukturen in ihre Reaktoren einbauen. »Das ist aufwändig und teuer«, sagt Jörg Adler, Forscher am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Dresden. Zusammen mit Kollegen der Fraunhofer-Institute für Werkzeugmaschinen und Umformtechnik IWU in Chemnitz und für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart entwickelte Adler ein Konzept, das die Wärmeleitfähigkeit der aufgeschütteten Materialien um das Fünffache erhöht. Dafür haben die Wissenschaftler zylinderförmige Füllkörper mit Metall ummantelt: Die Metallhüllen der einzelnen Körper berühren sich und bilden so ein metallisches Gerüst über die gesamte Schüttung aus, in dem sich Wärme schneller und effizienter ausbreiten kann.

Wirkungsgrad um das Fünffache erhöht

Den Effizienzsprung haben die Wissenschaftler im Labor mit einer acht Liter großen Schüttung aus Aluminium-ummantelten Zeolith-Füllkörpern bei einem Wärmespeicher nachgewiesen. Adler beschreibt die Vorteile: »Die Schüttung ist schneller gleichmäßig warm. Das Entladen und Beladen des Wärmespeichers geht deutlich schneller. Bei chemischen Reaktionen würde sich die Effizienz und damit die Produktgüte erhöhen.« Die Forscher gehen davon aus, dass der Effekt mit einem Metall, das noch besser Wärme leitet – zum Beispiel Kupfer, weiter ausgebaut werden kann. Die Schüttkörper aus dem Labor haben eine Länge von fünf Millimetern. Die sie ummantelnde Aluminiumschicht ist 0,25 Millimeter dick. Die Wissenschaftler stellen sie in einem eigens dafür entwickelten massentauglichen Verfahren her: Sie füllen lange Metallrohre mit dem Schüttmaterial, verdichten es, damit es nicht herausrutscht und zerschneiden die Rohre dann zu einzelnen, wenige Millimeter langen Zylindern.

»Die chemische Industrie nutzt Schüttkörper in großen Mengen und über längere Zeit hinweg. Idealerweise verbleiben sie mehrere Jahre in den Reaktoren. Ein Problem bei Transport und Anwendung ist pulverförmiger Abrieb: Dieser entsteht durch die Bewegungen der Schüttkörper gegeneinander. Die Metallhülle schützt die Schüttkörper vor Abrieb und erhöht so ihre Lebensdauer«, so Adler.

Mit Wasser getränkte Schüttkörper aus Zeolith trocknen bei Wärmezufuhr und nehmen die Wärme auf. Befeuchtet man sie, geben sie diese wieder ab. Dieser physikalische Effekt qualifiziert sie auch für den Einsatz in Wärmespeichern. »Die Effizienz dieses Prozesses hängt ebenfalls von der Wärmeleitfähigkeit des Zeolith ab. Oft müssen sehr aufwändige Wärmetauscher-Konstruktionen installiert werden, die teuer sind und dem eigentlichen Wärmespeicher Volumen wegnehmen. Hier können die Metall-ummantelten Füllkörper Mehrwert schaffen. Im Labor haben wir die Zyklenzeit des Wärmespeichers deutlich verkürzt«, sagt Adler.

Machbarkeit und Funktion der Ummantelung konnten im Labor gezeigt werden. Jetzt wollen die Forscher die nächsten Schritte Richtung industrielle Anwendung gehen. »Wir müssen Material und Herstellung noch weiter optimieren und nachweisen, in welchem Ausmaß genau der Nutzen der höheren Wärmeleitfähigkeit die zusätzlichen Kosten der Metall-Ummantelung übersteigt«, so Adler.

Aufgeschüttete Füllkörper aus Katalysatorstoffen oder Adsorptionsmitteln (Sorbentien) sind Massenware in der chemischen Industrie. Katalysatoren fördern chemische Reaktionen ohne dabei selbst aufgebraucht zu werden. Sorbentien nehmen bestimmte Produkte auf und speichern sie in sich. Die Füllkörper kommen beispielsweise zum Einsatz, um chemische Reaktionen zu optimieren oder sind Bestandteil von modernen Wärmespeichern. Dabei wird das Material in einem Reaktor mit einer Flüssigkeit oder einem Gas durchströmt, die an der Oberfläche der winzigen Körper eine chemische Reaktion auslösen.

Forschung Kompakt 1.7.2015

Weitere Informationen: www.fraunhofer.de

Speichere in deinen Favoriten diesen permalink.