Maschinelles Lernen in der Werkstoffentwicklung

Dr. Ramona Langner, Dr. Heike Brandt, Dr. Diana Freudendahl

Beim maschinellen Lernen (ML), einem Teilgebiet der künstlichen Intelligenz, erlernen Computer anhand von Beispieldaten bestimmte Aufgaben, z. B. ein Objekt auf einem Bild zu erkennen. Ein wichtiger Aspekt ist dabei, dass das System aber nicht nur aus gegebenen Daten lernen, sondern später auch verallgemeinern können soll, dass also im Anwendungsfall auch bisher unbekannte Daten bewertet werden können. Zum einen lassen sich mit Hilfe maschinellen Lernens große Datenmengen auswerten, weswegen diese Technologie in enger Beziehung zum Konzept Big Data steht. Zum anderen wird als Vorteil gesehen, dass durch die Nutzung von ML auch mit unvollständigem Hintergrundwissen valide Ergebnisse über bisher unerkannte Zusammenhänge in den untersuchten Daten erhalten werden können. Weiterlesen

Inspektionsmethoden für die wiederkehrende Prüfung hochelastischer Dickschicht- und Strukturklebungen in Schiffbauanwendungen –Teil 2 (Ermittlung von Abminderungsfaktoren)

Abbildung 1: Typischer Kraft/Verschiebungs-Verlauf mit Auswertungskriterien (links) und ermittelte mechanische Kennwerte fehlerfreier Referenzproben (rechts)

Abbildung 1: Typischer Kraft/Verschiebungs-Verlauf mit Auswertungskriterien (links) und ermittelte mechanische Kennwerte fehlerfreier Referenzproben (rechts)

Einleitung

Nachdem im ersten Teil dieser Artikelserie die Identifikation von typischen Fehlern in Klebverbindungen sowie die Klassierung und Abstraktion zu generischen Fehlerformen und deren Implementierung in Laborproben beschrieben wurde, soll in diesem zweiten Teil nun auf die Bewertung dieser Fehlerarten eingegangen werden. Diese Schadensbewertung geschieht vor dem Hintergrund, dass Fertigungsbetriebe und Betreiber von geklebten Strukturen in der Lage versetzt werden sollen die Gefährdung, die von fehler- und schadhaften Klebverbindungen  ausgehen kann, im Rahmen eines Risikomanagements zu beurteilen. Im dritten und letzten Teil der Artikelserie werden dann zerstörungsfreie Prüfverfahren und Methoden vorgestellt, mit denen entsprechende Imperfektion in Klebverbindungen detektiert werden können. Weiterlesen

Inkrementelle Blechumformung

Hintergrund

Die Blechumformung bietet eine Vielzahl von Möglichkeiten Bleche zu bearbeiten. Neben dem allgemein bekannten Tiefziehen und dem Innenhochdruckumformen gibt es eine Variante der Blechbearbeitung die weniger bekannt ist. Der vorliegende Artikel gibt einen kleinen Einblick in die inkrementelle Blechumformung (IBU).

Abbildung 1: Tiefziehblech DC06 s0=0,8 mm; β=55°; Drücktiefe 100 mm

Abbildung 1: Tiefziehblech DC06 s0=0,8 mm; β=55°; Drücktiefe 100 mm

Weiterlesen

Nachbearbeitung beim additiven Fertigungsverfahren Laserstrahlschmelzen – Herausforderungen und Optimierungspotential

Abbildung 1: Prinzipaufbau einer Maschine des Laserstrahlschmelzens

Abbildung 1: Prinzipaufbau einer Maschine des
Laserstrahlschmelzens

Chancen und Herausforderungen der additiven Fertigung

Additive Fertigungsverfahren gewinnen in den letzten Jahren zunehmend an Be­deutung. Als Gründe hierfür sind die wirtschaftliche und flexible Produktion kleiner Losgrößen, der Wegfall des Bedarfs an Bearbeitungswerkzeugen sowie die Realisierbarkeit von komplexen und bionischen Geometrien zu nennen. Zahlreiche Unternehmen setzen den schichtweisen Bauteilaufbau bereits zur Fertigung von Prototypen oder zur Fertigung von komplexen Funktionsbauteilen in Kleinserie ein. Dadurch werden Produktionskosten gesenkt, der Produktentstehungsprozess beschleunigt und neue Geschäftsfelder erschlossen. Die Anwendung additiver Fertigungsverfahren ist auch mit Herausforderungen verbunden. So erschwert insbesondere die prozessbedingt hohe Oberflächenrauigkeit metallbasierter additiver Fertigungsverfahren deren breite industrielle Anwendung. Die mit der notwendigen Bauteilnachbearbeitung einhergehenden Kosten können sich aufgrund der häufig sehr zeitaufwendigen und manuellen Tätigkeiten auf bis zu einem Drittel der bauteilbezogenen Gesamtkosten belaufen. Daher müssen die verfahrensspezifischen Gestaltungsprinzipien bei der Bauteilkonstruktion berücksichtigt werden und geeignete Nachbearbeitungsverfahren anwendungsspezifisch ausgewählt werden, um eine hohe Bauteilqualität und Produktivität der Nachbearbeitung zu erzielen. Weiterlesen

Neuartiges Konzept von Hartmetallwerkzeugen zur Feinbearbeitung

Abbildung 1. Mikrostrukturen von Hartmetall (links) und CBN-Verbundstoff (rechts) dargestellt, wobei die unterschiedlichen Maßstäbe zu beachten sind.

Abbildung 1. Mikrostrukturen von Hartmetall (links) und CBN-Verbundstoff (rechts) dargestellt, wobei
die unterschiedlichen Maßstäbe zu beachten sind.

Hintergrund

Bei der abrasiven Bearbeitung von Metallen können auf Werkstückoberflächen Qualitätsabweichungen aufgrund von Beschädigungen am Werkzeug auftreten. Manchmal sind Kratzer auf den Werkstücken infolge des Ausbrechens der harten abrasiven Körner zu beobachten. Das unerwartete Abbrechen der Körner resultiert ansatzweise aus geometrischen Unregelmäßigkeiten oder der inhomogenen Verteilung der abrasiven Körner in der Matrix infolge des Herstellungsprozesses. Es wird bereits daran gearbeitet, eine bessere Homogenität der abrasiven Körner zu erreichen, jedoch zielen bisherige Maßnahmen meistens auf die Verbesserung des Herstellungsprozesses. Es ist bisher noch eine praktische Herausforderung, Qualitätsabweichungen zu kontrollieren bzw. zu reduzieren. Es wird ein neuartiges Konzept von Hartmetallwerkzeugen mit definierten geometrischen Merkmalen und homogenen Verteilungen der Schneidkanten für die Feinbearbeitung vorgeschlagen. Die Oberfläche der Hartmetallwerkzeuge, deren Topographie die der konventionellen abrasiven Werkzeuge reproduziert, entsteht durch Lasertechnik präzise im Mikrobereich. In der Folge könnten Herstellkosten im Vergleich zu konventionellen abrasiven Werkzeugen, z.B. aus Diamanten oder CBN, reduziert werden. Weiterlesen

Inspektionsmethoden für die wiederkehrende Prüfung hochelastischer Dickschicht- und Strukturklebungen in Schiffbauanwendungen –Teil 1 (Schadensidentifikation und Herstellung von Proben mit definierten Schäden)

Abbildung 1: Scheibenklebungen im Kreuzfahrtschiffbau

Abbildung 1: Scheibenklebungen im Kreuzfahrtschiffbau

Einleitung

Die Klebtechnik rückt als innovatives Fügeverfahren des 21. Jahrhunderts im Schiffbau zunehmend in den Vordergrund. Seinen Anwendern offeriert sie vielversprechende Vorteile, u.a. die Möglichkeiten, verschiedene Werkstoffe miteinander zu verbinden und Zusatzfunktionen wie Abdichtung, Isolation, Schwingungs- und Geräuschdämpfung elegant durch die Auswahl geeigneter Klebstoffe zu integrieren. Doch warum bleibt der Fügetechnik der große Durchbruch im Schiffbau aktuell noch verwehrt? Weiterlesen

Maßgeschneidert (teil-)automatisieren mit Robotern

Dieser vom IPA und Partnern entwickelte Roboter für Poliervorgänge nutzt frei verfügbare ROS-Softwarekomponenten. (Quelle: Fraunhofer IPA)

Dieser vom IPA und Partnern entwickelte Roboter für Poliervorgänge nutzt frei verfügbare
ROS-Softwarekomponenten. (Quelle: Fraunhofer IPA)

In der Robotik tut sich aktuell viel und es lohnt sich, auch abseits der Massenfertigung Automatisierungspotenziale systematisch zu erschließen. Zum Beispiel die Mensch-Roboter-Kooperation ermöglicht flexible, skalierbare Anwendungen, bedarf aber hinsichtlich Wirtschaftlichkeit und Sicherheit guter Planung.

Mehrere große Industrieroboter schweißen gleichzeitig eine Autokarosserie in Fertigungszellen, die durch Zäune gesichert sind. Funken sprühen. Weit und breit ist kaum ein Werker zu sehen. Dies ist wohl das erste Bild, das vielen in den Sinn kommt, wenn sie das Stichwort „Industrieroboter“ hören. Eine solche Produktion mit einem Automatisierungsgrad von nahezu 100 Prozent ist zwar kosten- und zeitaufwendig in der Einrichtung, aber auch hocheffizient und ertragreich, wenn es darum geht, ein gleichbleibendes Produkt über einen langen Zeitraum herzustellen. Weiterlesen

automatica 2020 wird als Präsenzveranstaltung nicht stattfinden – neues Format für 2021 in Entwicklung

Die für den 8.–11. Dezember 2020 geplante automatica findet aufgrund der sich aktuell im Zusammenhang mit der Corona-Pandemie verschärfenden Reisebeschränkungen nicht statt. Diese Entscheidung hat die Messe München in Übereinkunft und enger Abstimmung mit dem VDMA Robotik + Automation als ideellem Träger sowie dem automatica-Fachbeirat getroffen. Gemeinsam mit der Branche entwickelt die Messe München jetzt für Mitte 2021 ein kompaktes und an die Begebenheiten der Corona-Zeit angepasstes, neues Präsenzformat. Zusätzlich baut die automatica ihr Digitalangebot weiter aus. Weiterlesen

Breites EOS Werkstoff-Portfolio für metallbasierte additive Fertigung: DMLS Kompetenz für gewohnt zuverlässige Bauteileigenschaften und neue Anwendungsfelder

Kupfer Wärmetauscher Demoteil Quelle: EOS

Kupfer Wärmetauscher Demoteil Quelle: EOS

Das in Krailling bei München angesiedelte, 1989 gegründete Unternehmen ist weltweit führender Anbieter für die pulverbasierte additive Fertigung von Kunststoffen und Metallen. In diesem Artikel soll es speziell um das breite Spektrum der Metallwerkstoffe gehen.

Die metallbasierte additive Fertigung umfasst diverse Technologien, wie z. B. Powder Bed Fusion (PBF) oder Metall-Binder-Jetting. Die unter dem Namen DMLS bekannte PBF-Technologie von EOS gilt heute im Metall 3D-Druck als Standard. Das Fertigungsverfahren kommt vor allem in anspruchsvollen Branchen wie Luft- und Raumfahrt, Automobil, Medizin, Werkzeug- und Turbomaschinenbau zum Einsatz, die eine einheitliche Bauteilqualität mit Eigenschaften ähnlich denen des konventionellen Guss- oder Schmiedeverfahrens verlangen. Weiterlesen

Borverbindungen mit ultrahoher Wärmeleitfähigkeit

Dr. Diana Freudendahl, Dr. Heike Brandt, Dr. Ramona Langner

Die Wärmeleitfähigkeit von Materialien spielt in den verschiedensten Bereichen, von der Biologie über das Wohnen bis hin zur Elektronik, eine große Rolle oder ist für bestimmte Funktionalitäten wie sehr hohe Rechenleistungen sogar essentiell und zukünftig von enormer Wichtigkeit. Materialien mit ultrahoher Wärmeleitfähigkeit gibt es jedoch nur wenige; hier werden sie definiert als Materialien deren Wärmeleitfähigkeit κ bei Raumtemperatur über der von Kupfer (>400 W/mK) liegt. So besitzt Diamant die höchste bekannte Wärmeleitfähigkeit (>2000 W/mK), gefolgt von Materialien wie Graphit (≈2000 W/mK, bezogen auf die Wärmeleitung entlang der Schichten), Siliziumcarbid (490 W/mK) und Silber (427 W/mK). In der Elektronik wird beispielsweise Diamant zur Wärmeableitung eingesetzt. Typischerweise ist dabei mikrokristallines Diamantmaterial in einem Metall gebunden, wobei Wärmeleitfähigkeiten von einigen hundert W/mK erreicht werden. Eine direkte Produktion von Diamanten in Wafergröße zur Wärmeableitung auf Chipebene ist jedoch immer noch sehr teuer und bildet die Ausnahme. Weiterlesen