automatica sprint: Neues Messeformat vom 22.–24.Juni 2021 in München

Die Messe München erweitert das Portfolio der automatica im Sommer 2021 um ein kompaktes, neues Veranstaltungsformat: Während die reguläre automatica erst wieder 2022 stattfindet, feiert die automatica sprint vom 22. bis 24. Juni 2021 auf dem Münchner Messegelände Premiere. Mit klarem Fokus auf Kundendialog und Maschinen zum Anfassen, ist das innovative Event eine zeitgemäße Antwort auf die aktuelle Situation. Dabei ist sie eine der ersten Chancen für die Community, sich wieder persönlich zu treffen. Rahmenbedingungen wie feste Standgrößen, ein einheitlicher Standbau, zentrales Catering, vereinfachte Prozesse oder neue Stornierungsmöglichkeiten reduzieren den Messevorlauf für Aussteller erheblich. Dadurch ist für die notwendige Flexibilität in der Corona-Zeit für alle Beteiligten gesorgt. Die automatica sprint ist von Anfang an sowohl als Präsenz-als auch als Digitalveranstaltung konzipiert, sodass bereits jetzt die Durchführbarkeit des neuen Formats garantiert ist. Ein durchdachtes Hygienekonzept ermöglicht zu dem die bestmögliche Sicherheit der Teilnehmer vor Ort. Weiterlesen

Kompostierbare Displays für nachhaltige Elektronik

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Forschende des KIT entwickeln gedruckte Displays, die biologisch abbaubar sind

In den kommenden Jahren drohen die zunehmende Verwendung elektronischer Geräte in Gebrauchsgegenständen sowie neue Technologien im Zusammenhang mit dem Internet der Dinge, die Produktion von Elektronikschrott zu erhöhen. Eine umweltfreundlichere Produktion und ein nachhaltigerer Lebenszyklus sind hier von entscheidender Bedeutung, um Ressourcen zu sparen und Abfallmengen zu minimieren. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ist es erstmalig gelungen, Displays zu produzieren, deren Bioabbaubarkeit von unabhängiger Seite geprüft und bestätigt wurde. Weiterlesen

Edelmetallfreie Vernetzung von Siliconen

Matthias Nobis im Labor des WACKER-Instituts für Silicium Chemie in Garching Bild: Andreas Heddergott / TUM

Matthias Nobis im Labor des WACKER-Instituts für Silicium Chemie in Garching
Bild: Andreas Heddergott / TUM

Nachhaltiges Verfahren könnte Edelmetalle bei der Vernetzung von Siliconen ersetzen

Silicone haben sich im privaten und im professionellen Bereich bewährt. Damit aus dem flüssigen Vorprodukt das elastische und haltbare Polymer wird, benötigt man jedoch in vielen Fällen teure Edelmetalle als Katalysatoren. Einem Forschungsteam der Technischen Universität München (TUM) und des Münchner WACKER-Konzerns ist es nun gelungen, einen Vernetzungsprozess zu entwickeln, der ohne Edelmetalle auskommt.
Weiterlesen

Fingerkuppen-Sensor mit Feingefühl

Der ultradünne Nanomesh-Sensor trägt sich wie eine zweite Haut auf der Fingerkuppe. Er kann so den ausgeübten Druck messen, ohne dass dabei der Tastsinn beeinträchtigt wird. Bild: Someya-Yokota-Lee Group / The University of Tokyo

Der ultradünne Nanomesh-Sensor trägt sich wie eine zweite Haut auf der Fingerkuppe. Er kann so den ausgeübten Druck messen, ohne dass dabei der Tastsinn beeinträchtigt wird.
Bild: Someya-Yokota-Lee Group / The University of Tokyo

Ultradünner Sensor misst Druck beim Tasten

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) und der Universität Tokyo haben einen ultradünnen Mess-Sensor entwickelt, der wie eine zweite Haut auf der Fingerkuppe getragen werden kann. Dadurch bleibt der Tastsinn am Finger unbeeinträchtigt und das Feingefühl erhalten. Der Sensor kann so wertvolle Daten für die Entwicklung neuer Technologien liefern. Weiterlesen

Plasma macht’s möglich: Oberflächen gezielt modifizieren und ganz neue Materialeigenschaften und -verbunde herstellen

Mit Plasma lassen sich neue Materialverbunde und -eigenschaften erzeugen (Bild: Plasmatreat)

Mit Plasma lassen sich neue Materialverbunde und -eigenschaften erzeugen (Bild: Plasmatreat)

Die Plasmatechnologie dringt zielsicher in nahezu alle Forschungs- und Industriezweige vor – von der Automobilbranche über die Medizin- und Verpackungstechnik bis hin zur Elektronik- und Konsumgüterindustrie. Denn ihre Leistungsfähigkeit in der Oberflächenbehandlung ist wegweisend: Bisher inkompatible Materialien lassen sich nun zusammen verarbeiten und ganz neue Materialverbunde werden möglich.  Plasmatreat ist Experte auf diesem Gebiet. Mit einem breiten Spektrum an Plasmaanlagen und Anlagen-Komponenten, z. B. inlinefähige Lösungen für atmosphärische Plasmaverfahren (Open­air-Plasma), bietet sie Anwendern standardisierte Lösungen für ein vielfältiges Einsatzfeld. Dazu ist sie erster Ansprechpartner für Spezialfälle: Im hauseigenen Technologiecenter entwickeln Plasmaexperten Hand in Hand mit dem Kunden effiziente Lösungen für individuelle Pro­blemstellungen. Weiterlesen

Inspektionsmethoden für die wiederkehrende Prüfung hochelastischer Dickschicht- und Strukturklebungen in Schiffbauanwendungen –Teil 3 (Fehlstellendetektion mit Hilfe von zerstörungsfreien Prüfverfahren)

Einleitung

Nachdem in den Teilen 1 und 2 dieser Artikelserie auf typische Fehlerarten in Klebverbindungen sowie auf deren Schadensbewertung eingegangen wurde, wird in diesem dritten Teil nun aufgezeigt, welche Möglichkeiten bestehen, entsprechende Fehler in Klebverbindungen zerstörungsfrei zu detektieren. Insbesondere im Schiffbau, der durch metallische Bauweisen und schweißtechnische Fügeverfahren geprägt ist, besteht noch immer eine große Skepsis gegenüber geklebten Verbindungen. Um den Befürchtungen eines Totalausfalls einer sicherheitsrelevanten Klebverbindung entgegen zu wirken, besteht die Möglichkeit, diese während des Einsatzes zerstörungsfrei zu prüfen, um ggf. entstandene Schäden oder Fehlstellen frühzeitig zu erkennen und Reparaturmaßnahmen einzuleiten. Dieses Vorgehen wird bei Schienenfahrzeugen und Windkraftanlagen bereits im Rahmen wiederkehrender Prüfungen erfolgreich praktiziert. Weiterlesen

„Artgerechte Haltung“ von Lithium-Ionen-Akkus

Bild 1: Ladegeräte und Akkus verbrannt, schon eine in Brand geratene Zelle entzündet schnell die Umgebung. (Urheber: CEMO)

Bild 1: Ladegeräte und Akkus verbrannt, schon eine in Brand geratene Zelle entzündet schnell die Umgebung. (Urheber: CEMO)

Ob Smartphone, Notebook, Kinderroller, Pedelec oder Rollstühle und Krankenbetten, die Liste mobiler Geräte, die mit Lithium-Akkus betrieben werden, ist lang. Doch lediglich der Transport dieser Akkus ist streng in den Gefahrgutvorschriften gesetzlich geregelt. Darüber hinaus gelten für Umgang bzw. Lagerung die vom Hersteller empfohlenen Hinweise und die richtungsweisenden Publikationen der Versicherungswirtschaft. Doch wie genau muss man diese einhalten bzw. was kann bei Missachtung der Vorgaben passieren? Weiterlesen

ICO Innovative Computer GmbH erhält Innovationspreis Rheinland-Pfalz 2020 für das automatische Kleinteilelager STOROJET

(Bildquelle: ICO Innovative Computer GmbH)

(Bildquelle: ICO Innovative Computer GmbH)

Am 16. November fand die diesjährige Verleihung des Innovationspreises Rheinland-Pfalz statt. Aufgrund der aktuellen COVID-19 Pandemie verzichtete man zum ersten Mal auf den festlichen Rahmen und entschied sich für eine kontaktlose Verleihung via Livestream.

Über den 1. Preis in der Kategorie „Unternehmen“ durften sich dabei gleich zwei Teilnehmer freuen. Darunter auch die ICO Innovative Computer GmbH aus Diez für die Entwicklung des „STOROJET“. Weiterlesen

VON MENSCH ZU MENSCH: ystral startet sein neues Informationsportal „ihr-prozess-ist-mehrwert.de“

(Bildquelle: ystral gmbh)

(Bildquelle: ystral gmbh)

Auf www.ihr-prozess-ist-mehrwert.de zeigen die Verfahrens- und Anwendungstechniker von ystral, mit wie viel Herzblut und Leidenschaft sie Mischprozesslösungen für unterschiedliche Industrien entwickeln. Ein Dialog auf Augenhöhe – von Mensch zu Mensch, der unter anderem Videos, Fachartikel, Case Studies und Online-Vorträge umfasst. Weiterlesen

Direkte solare Wasserstofferzeugung

Dr. David Offenberg, Dr. Ramona Langner, Dr. Diana Freudendahl

Durch eine Bestrahlung mit Sonnenlicht können in einem Halbleiter negative und positive Ladungsträger freigesetzt werden. Bei Solarzellen erzeugt man dadurch elektrischen Strom. Bei der direkten solaren Wasserstofferzeugung nutzt man diese Ladungsträger, um damit direkt an der Oberfläche der Halbleiter Wasser in seine Bestandteile Wasserstoff und Sauerstoff aufzuspalten. Im Vergleich zur Wasserspaltung durch Elektrolyse mit Strom aus Solarzellen verspricht man sich von dieser direkteren Methode eine deutlich einfachere technische Umsetzung und eine höhere Effizienz. Trotz jahrzehntelanger Forschung ist es bisher aber noch nicht gelungen, konkurrenzfähige Systeme zu entwickeln. In den letzten Jahren sind jedoch vielversprechende Entwicklungen und ein starker Anstieg der Forschungsaktivität zu beobachten. Solarer Wasserstoff könnte in Zukunft in vielen Bereichen fossile Energieträger ersetzen und für industrielle Prozesse aus Erdgas erzeugten Wasserstoff ablösen, um zu einer Senkung der CO2-Emissionen beizutragen. Weiterlesen