F-Gase-Verordnung: Die Notwendigkeit zur Chance machen

© technotrans SE

© technotrans verfolgt einen konsequenten Ausbau natürlicher Kältemittel in seinen energieeffizienten Temperiergeräten der Baureihe teco ci

Die Verschärfungen der F-Gase-Verordnung sorgen bei vielen Unternehmen für Unsicherheit. Fristen rücken näher und die Frage nach der richtigen Kältemittel-Strategie drängt. Was auf den ersten Blick wie eine regulatorische Belastung wirkt, ist gleichzeitig eine strategische Chance für mehr Effizienz, sinkende Betriebskosten und echte Zukunftssicherheit. Als führender Thermomanagement-Spezialist hat technotrans bereits seit Jahren Kühl- und Temperiertechnik mit natürlichem Kältemittel bei seinen Kunden im Einsatz. Mit seiner Erfahrung zeigt das Unternehmen, wie Betriebe die Transformation erfolgreich gestalten und die Notwendigkeit in einen klaren Wettbewerbsvorteil verwandeln. Weiterlesen

Der gläserne Druckgussprozess – Rückverfolgbarkeit und Vorhersage durch Digitalisierung und KI

Der digitale Druckguss-Zwilling verknüpft Materialzustandsinformationen zu allen Teilprozessen des Druckgießens und schafft eine Wissensbasis zum Erfüllen von wirtschaftlichen, technologischen und ökologischen Anforderungen. Dazu wurden am Fraunhofer IWM mit Ontologie-basierten semantischen Strukturen Wissensgraphen zu verschiedenen Prozessschritten erstellt und vernetzt.

© Fraunhofer IWM Abb. 1: Der gläserne Druckgussprozess – mit einer integrierten Wissensbasis zu Material- und Prozessdaten den wirtschaftlichen, technologischen und ökologischen Anforderungen an Gussbauteile gerecht werden

© Fraunhofer IWM
Abb. 1: Der gläserne Druckgussprozess – mit einer integrierten Wissensbasis zu Material- und Prozessdaten den wirtschaftlichen, technologischen und ökologischen Anforderungen an Gussbauteile gerecht werden

Dekarbonisierung, Kostensteigerungen, Entwicklungstempo, Innovationsdruck – ohne eine umfassende produktbezogene Wissensbasis können die Herausforderungen, die teilweise im Zielkonflikt miteinander stehen, nicht bewältigt werden. Das gilt besonders für technologieintensive Produkte, die hohe Anforderungen an Sicherheit, Zuverlässigkeit und Lebensdauer zu erfüllen haben, und genauso für Gussbauteile. Weiterlesen

Neuartige „Tinte“ für den lichtbasierten 3D-Druck

Konzept zur Herstellung elektrochromer Strukturen mithilfe von Digital Light Processing (links); Anwendung im spektroelektrochemischen Experiment (rechts). Bild: Universität Stuttgart / GRK 2948 / F. Sterl

Konzept zur Herstellung elektrochromer Strukturen mithilfe von Digital Light Processing (links); Anwendung im spektroelektrochemischen Experiment (rechts).
Bild: Universität Stuttgart / GRK 2948 / F. Sterl

Eine neuartige „Tinte“ macht es möglich, elektrochemisch schaltbare, leitfähige Polymere mit einem lichtbasierten Verfahren dreidimensional zu drucken. Forschende der Universitäten Heidelberg und Stuttgart ist es gelungen, sogenannte Redoxpolymere für die additive Fertigung mit Digital Light Processing nutzbar zu machen. Die auf diese Weise entstehenden komplexen zwei- und dreidimensionalen Strukturen können elektrochemisch so manipuliert werden, dass sie ihre Farbe ändern. Dies eröffnet neue Perspektiven für die Fertigung etwa von 3D-gedruckten optoelektronischen Geräten. Die Forschungsarbeiten wurden im Rahmen des von beiden Universitäten getragenen Graduiertenkollegs „Gemischter Ionen-Elektronentransport: Von den Grundlagen zur Anwendung“ durchgeführt. Weiterlesen

Protonenleitende Keramiken für die Energiewende

Bild: Pixelbuddha Studio -stock.adobe.com/TU Darmstadt

Bildquelle: Pixelbuddha Studio -stock.adobe.com/TU Darmstadt

Die Deutsche Forschungsgemeinschaft (DFG) richtet eine neue Forschungsgruppe unter Federführung der TU Darmstadt ein. In dem Vorhaben „SynDiPET“ von TU-Professorin Dr.-Ing. Bai-Xiang Xu als Sprecherin geht es um sogenannte protonenleitende Keramiken, die aufgrund ihres möglichen Einsatzes als Elektrolyte Schlüsselmaterialien für die Energiespeicherung und Brennstoffzellentechnologie sind. Die Technologie ermöglicht mit relativ geringem Energieeinsatz die Erzeugung von hochreinem, trockenem Wasserstoff, der direkt weiterverwendet werden kann. Wasserstoff gilt als einzige realistische Lösung, um erneuerbare Energie in großem Maßstab zu speichern.

Allerdings stößt bei der Gestaltung von protonenleitenden keramischen Elektrolyten das bisherige Materialdesign zunehmend an Grenzen, was eine breite Anwendung bislang einschränkt. Hier setzt die Forschungsgruppe „Synergetisches Design protonenleitender Keramiken für Energietechnologie (SynDiPET)“ an: Sie will in einer übergreifenden Betrachtung die Mikrostrukturen von Elektrolytkeramiken optimieren, insbesondere durch neuartige Sinter- und Charakterisierungstechnik. Dabei sollen auch skalenübergreifende Simulationen und Methoden des Maschinellen Lernens einbezogen werden. Weiterlesen

Neuer Standard: Materialforscher trainieren KI mit Mikroskopie-Analysedaten von 10.000 Stahlproben

Bei rund 5.000 Stahlsorten kommt es im Herstellungsprozess auf Nuancen an. Um neue Eigenschaften zu kreieren oder die konstante Qualität zu sichern, werden die Stähle mit verschiedenen Bildgebungsverfahren analysiert. Professor Frank Mücklich und sein Forschungsteam haben dazu über viele Jahre eine umfassende Expertise aufgebaut. Mit ihren mikroskopischen Analysedaten konnten sie eine KI so trainieren, dass sie kleinste Veränderungen im Stahl aufspürt.

Diese KI kann nun auch in Industrielaboren als Standard dienen, um metallische und keramische Werkstoffe zu analysieren. Dafür arbeiten die Saarbrücker Forscher mit der auf Bilddatenbanken spezialisierten Firma Imagic aus der Schweiz zusammen.

Bei der Herstellung von Stahl und anderen Metallen wirkt sich jeder Produktionsschritt auf die innere Struktur aus, von Materialforschern als „Gefüge“ bezeichnet. Dieses wird durch die chemische Zusammensetzung, das Walzverfahren oder Wärmebehandlungen verändert. „Das Gefüge des Stahls ist äußerst komplex und je nach gewünschter Eigenschaft sehr unterschiedlich. Unter dem Mikroskop oder in der Computertomographie müssen aber auch kleinste Unterschiede erkannt und richtig klassifiziert werden. Dies leistet unser KI-gestütztes Verfahren nun automatisch“, erklärt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes. Weiterlesen

Nachhaltige Batterien aus Nebenprodukten der Holzindustrie

 © Fraunhofer IKTSHard Carbon, gewonnen aus Lignin, einem Nebenprodukt der Holzindustrie, bildet die Basis für die Elektrode der Thüringer Wald-Batterie.

© Fraunhofer IKTS
Hard Carbon, gewonnen aus Lignin, einem Nebenprodukt der Holzindustrie, bildet die Basis für die Elektrode der Thüringer Wald-Batterie.

Angesichts des wachsenden Bedarfs an Energiespeichern für die Energiewende sind kostengünstige, sichere und ressourcenschonende Batterietechnologien dringend erforderlich. Natrium-Ionen-Batterien auf Basis lokal verfügbarer und umweltfreundlicher Materialien bieten hier einen vielversprechenden Ansatz. Fraunhofer-Forschende und ihre Projektpartner nutzen Lignin – ein Nebenprodukt der Holz- und Zellstoffindustrie – als Bestandteil eines Natrium-Ionen-Batteriesystems. Weiterlesen

Neuartiges magnetisches Material mit Spiralstruktur

Künstlerische Darstellung des p-Wellen-Splittings: Laufrichtungsabhängiger Spin von Elektronen (grüne/lila Pfeile) über einer magnetischen Gitterstruktur. (Grafik: Dr. Jan Masell, KIT)

Künstlerische Darstellung des p-Wellen-Splittings: Laufrichtungsabhängiger Spin von Elektronen (grüne/lila Pfeile) über einer magnetischen Gitterstruktur. (Grafik: Dr. Jan Masell, KIT)

Ein neuartiges magnetisches Material mit ungewöhnlicher elektronischer Struktur könnte künftig schnellere, kleinere und effizientere Computerchips ermöglichen: der p-Wellen-Magnet. An seiner Herstellung waren Forschende des Karlsruher Instituts für Technologie (KIT) beteiligt. Sein magnetisches Verhalten im Innern des Materials entsteht, weil sich die Spins der Elektronen wie eine Spirale anordnen. Dadurch wird durchfließender elektrischer Strom seitlich abgelenkt. Weiterlesen

Schnelle Füllstoffbestimmung für die Qualitätssicherung und Betriebskontrolle in der Kunststoffindustrie

Fasern als Füllstoffe
Der schnellste Muffelofen der Welt Phönix Black

Der schnellste Muffelofen der Welt Phönix Black

Durch die Zugabe von Fasern lassen sich bei Kunststoffen die mechanischen und mechanisch-thermischen Eigenschaften verbessern. Dies gilt insbesondere für Festigkeit, Steifigkeit, Härte, Wärmeformbeständigkeit, Verschleißwiderstand, Maßhaltigkeit und Feuchteaufnahme.
Die Fasern im Compoundier-Verfahren direkt in die Schmelze zugeben, ist bei vielen Herstellern im großen Umfang üblich. Viele technische Kunststoffe sind ohne Fasern nicht mehr denkbar. Häufig werden Kurzglasfasern verwendet, deren Faserlänge im Granulat bei 300 µm liegt. Vereinzelt werden auch Langfaserprodukte verwendet, deren Faserlänge bis zu dreimal größer ist. Zu jedem Herstellungsprozess und jeder Eingangskontrolle gehört daher die Messung des Glasfaser-Füllstoffgehalts. Zudem werden immer häufiger Kohlefaser, Carbon Nanotubes etc. in das Compound eingearbeitet. Im Zeichen zertifizierter Qualitätssicherungssysteme nach DIN ISO 9000ff, die heute von den meisten Produktionsbetrieben eingerichtet sind, soll die Überprüfung der Produktqualität in kurzen Abständen erfolgen und Konsequenzen ermöglichen: ein rasches Eingreifen und Anpassen des Fertigungsprozesses sind nötig. Weiterlesen

Herstellung und Charakterisierung eines Metall-Keramik-Verbundwerkstoffs mittels Additiver Fertigung

In diesem Beitrag wird die Entwicklung eines neuen Verbundwerkstoffs auf Basis von Edelstahl und Aluminiumoxid unter Verwendung der Additiven Fertigung vorgestellt. Die Pulver wurden im Volumenverhältnis 1:1 gemischt und mit Zellulose und Additiven zu einer viskosen Masse verarbeitet. Durch Material Extrusion wurden Probekörper hergestellt, die anschließend bei 1350 °C unter Argon gesintert wurde. Die Mikrostruktur zeigt ein dichtes Gefüge, in dem Edelstahl-Partikel gleichmäßig versintert und Aluminiumoxid-Partikel umhüllt sind. Dieses Gefüge führt zu einer gesteigerten Härte und Verschleißbeständigkeit des Materials. Der Prozess und die Eigenschaften des Materials bieten neue Perspektiven für den Einsatz in verschleißkritischen Anwendungen. Weiterlesen