Metallmäntel optimieren chemische Reaktionen

g_6_fk07_2015_MetallmДntel optimieren chemische Reaktionen

Schüttgut ist Massenware in der chemischen Industrie. Das Fraunhofer IKTS schützt die millimetergroßen Partikel jetzt mit einem Metallmantel. Das erhöht ihre Wärmeleitfähigkeit um das Fünffache. © Fraunhofer IKTS

Für die chemische Industrie sind sie Massenware: Aufgeschüttete Füllkörper, die als Katalysator oder Adsorptionsmittel in Reaktoren und Wärmespeichern eingesetzt werden. Fraunhofer-Forscher entwickelten einen Metallmantel für die einzelnen Füllkörper, der ihre Wärmeleitfähigkeit um das Fünffache erhöht.

Viele chemische Reaktionen und Wärmespeicher nutzen aufgeschüttete Füllkörper als Katalysator oder Adsorptionsmittel. Die Industrie setzt mehrere Millionen Tonnen dieser Funktionsmaterialien im Jahr ein, um ihre Grundstoffe herzustellen. Damit die Reaktionen wie gewünscht ablaufen, müssen die Füllkörper besonders wärmeleitfähig sein. Das Problem: Zwischen den nur wenigen Millimeter großen Körpern lässt sich die Wärme nicht optimal weiterleiten. Weiterlesen

Herstellung von Keramikfolien präzise simulieren

Unten – makroskopische Simulation: Stromlinien während des Gießprozesses, bei dem der Keramikschlicker rechts eingefüllt wird und links unten als Folie den Gießkasten verlässt. Oben – mikroskopische Simulation: Ausrichtung der Keramikpartikel an zwei Stellen im Prozess. © Fraunhofer IWM

Unten – makroskopische Simulation: Stromlinien während des Gießprozesses, bei dem der Keramikschlicker rechts eingefüllt wird und links unten als Folie den Gießkasten verlässt. Oben – mikroskopische Simulation: Ausrichtung der Keramikpartikel an zwei Stellen im Prozess.
© Fraunhofer IWM

Hersteller von Keramikfolien sind bislang auf ihre Erfahrung angewiesen, wenn sie die Eigenschaften der Folien einstellen. Nun hilft erstmalig eine Kombination von makro- und mikroskopischer Simulation: Diese sagt vorher, wie der Ausgangsstoff durch die Maschine fließt und berechnet die Ausrichtung der Keramikteilchen.

Tassen, Zahnimplantate, Waschbecken – all diese Dinge bestehen bekanntermaßen aus Keramik. Weniger bekannt ist dagegen, dass das Material auch in Abgas- und Temperatursensoren im Auto verbaut ist, und zwar in Form von Folien. Hier dienen sie beispielsweise als Trägermaterial für elektrische Leiterbahnen, das extrem hohe Temperaturen aushält. Auch in Filteranlagen kommen pörose Keramikfolien zum Einsatz: So seihen sie etwa in der Lebensmittelindustrie Wasser, Milch, Bier oder Wein. Weiterlesen

Rohstoffe aus Industriewässern gewinnen – mit Membranadsorbern

In der porösen Trägerstruktur der Membranadsorber sind winzige Polymerpartikel eingebettet, die Wertstoffe aus dem Wasser binden. © Fraunhofer IGB

In der porösen Trägerstruktur der Membranadsorber sind winzige Polymerpartikel eingebettet, die Wertstoffe aus dem Wasser binden.
© Fraunhofer IGB

Am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart entwickeln Wissenschaftler Membranadsorber, mit denen sich Schad- und Wertstoffe aus Wasser selektiv abtrennen lassen. Diese Technologie kann einerseits zur Wasseraufbereitung eingesetzt werden, ein großes Potenzial liegt aber speziell in der Rückgewinnung von wertvollen Metallen.

Im Zuge knapper werdender Ressourcen gewinnt das Recycling von Rohstoffen immer mehr an Bedeutung. Insbesondere Sondermetalle sind aufgrund ihres Werts (Edelmetalle) oder ihrer Verfügbarkeit (Seltene Erden) für die Industrie enorm wichtig. In industriellen Prozess- und Abwasserströmen sind beträchtliche Mengen dieser metallischen Rohstoffe enthalten. Weiterlesen

Elektromobilität und Leichtbau für Deutschland große Zukunftsthemen

Werkstoffeinsatz

Werkstoffeinsatz

Für die Studie „Chancen und Herausforderungen im ressourceneffizienten Leichtbau für die Elektromobilität“ haben Wissenschaftler der – durch das Bundesministerium für Bildung und Forschung (BMBF) geförderten – Forschungsplattform FOREL
240 Wirtschafts- und Wissenschaftsexperten auf dem Gebiet des Leichtbaus und der Elektromobilität aus verschiedenen Branchen befragt. Ziel war es, aktuelle Ansätze und Entwicklungen auf dem Gebiet des elektromobilspezifischen Leichtbaus zu erfassen und Entwicklungs- und Forschungsbedarfe aufzuzeigen. Die Ergebnisse der Befragung wurden jetzt in der FOREL-Studie zusammengefasst und veröffentlicht. Weiterlesen

Naturkautschuk aus Löwenzahn

Löwenzahn ist eine robuste Pflanze, aus der sich ein gefragter Rohstoff gewinnen lässt: Kautschuk. Dieser ist für die Produktion von Gummi unerlässlich. Fraunhofer-Forscher nutzen Russischen Löwenzahn, um große Mengen an Naturkautschuk herzustellen.

Etwa 40 000 Produkte unseres täglichen Lebens enthalten Naturkautschuk. Ob Matratzen, Handschuhe, Klebestreifen oder Reifen – erst der Rohstoff verleiht extreme Elastizität, Zugfestigkeit und Kälteflexibilität. Natürlichen Kautschuk durch künstlichen zu ersetzen, ist bisher nicht möglich. Forscher des Fraunhofer-Instituts für Molekularbiologie und Angewandte Oekologie IME am Standort Münster fanden jedoch eine preiswerte und umweltfreundliche Alternative zum Kautschukbaum: Russischer Löwenzahn.

Naturkautschuk wird derzeit ausschließlich aus dem Baum »Hevea brasiliensis« gewonnen, eine Pflanzenart der Subtropen. Die wachsende Nachfrage und zunehmende Probleme mit Schadpilzen machen Naturkautschuk zum kostbaren Gut. 95 Prozent der weltweiten Gesamtproduktion stammt aus Südost-Asien. Um den steigenden Verbrauch zu decken, werden Regenwälder gerodet und in Agrarland umgewandelt. Mit Taraxacum koksaghyz, dem Russischen Löwenzahn, stießen Professor Dirk Prüfer und sein Kollege Dr. Christian Schulze Gronover vom IME auf einen effizienten Ersatz für den Kautschukbaum. »Die Pflanze ist extrem anspruchslos. Sie kann in gemäßigtem Klima und selbst auf Böden kultiviert werden, die für die Produktion von Nahrungs- und Futtermitteln nicht oder nur begrenzt geeignet sind«, erklärt Christian Schulze Gronover. »Außerdem hat Löwenzahn den Vorteil, dass er von Jahr zu Jahr wächst. Der Kautschukbaum bringt erst nach sieben bis zehn Jahren einen Ertrag.« Weiterlesen

Diamantartige Schichten sparen Treibstoff

Werden Motorenkomponenten mit hartem Kohlenstoff beschichtet, reduzieren sich ihre Reibungswerte fast auf null. Weltweit ließen sich jedes Jahr Milliarden Liter Treibstoff sparen. Ein neues Laser-Verfahren ermöglicht nun die Beschichtung in Serie.

Werkstücke mit diamantähnlichem Kohlenstoff zu beschichten, um damit Reibung zu minimieren, ist bereits möglich. Fraunhofer-Forscher entwickelten nun das Laser-Arc-Verfahren, um Kohlenstoffschichten mit nahezu der Härte von Diamant großtechnisch in hohen Beschichtungsraten und großen Dicken aufzutragen. Werden Kohlenstoffschichten etwa auf Kolbenringe oder Kolbenbolzen von Motoren aufgebracht, sinkt der Verbrauch der Antriebe. »Durch unsere Entwicklung könnte man bei konsequenter Anwendung in den kommenden zehn Jahren über 100 Milliarden Liter Treibstoff pro Jahr einsparen«, betont Prof. Andreas Leson vom Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden. Er bezieht sich dabei auf eine Studie, die 2012 im Fachjournal Tribology International veröffentlicht wurde. Weiterlesen

Wissenschaftler der TU Dresden entwickeln Online-Imprägnier-Wickelverfahren zur Herstellung von Verbundstrukturen

In einem Gemeinschaftsprojekt des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) und des Instituts für Leichtbau und Kunststofftechnik (ILK) der Technischen Universität Dresden entwickeln Wissenschaftler ein hochproduktives Online-Imprägnier-Wickelverfah ren zur Verarbeitung von Hybridspreizbändern. Ziel des Vorhabens ist es, Textil-Thermoplast-Verbundstru kturen, wie Rohre und Behälter, auf Basis anforderungsgerechter, aufgespreizter Hybridgarne reproduzierbar, effizienter und kostengünstiger herzustellen.

Das Augenmerk der textiltechnischen Arbeiten der ITM-Wissenschaftler liegt auf der Entwicklung eines Prozesses zur Herstellung homogener Hybridspreizbänder sowie deren Weiterverarbeitung auf Basis der Multiaxialkettenwirktechnologie. Hybridspreizbänder sind besonders breit und flach und weisen eine gleichmäßige Durchmischung von Verstärkungs- und Polymerfilamenten auf. Durch den Einsatz von Hybridspreizbändern können kurze Imprägnierzeiten bei der Verarbeitung realisiert werden.
Die Entwicklung eines Online-Imprägnier-Wickelverfahrens durch Wissenschaftler des ILK ermöglicht es darüber hinaus, den Imprägnier- und Konsolidiervorgang in den Wickelprozess zu integrieren. Mit der Realisierung kürzester Imprägnierzeiten und der Online-Fixierung der imprägnierten Hybridspreizbänder auf dem Wickelkern können hohe Wickelgeschwindigkeiten erzielt werden. Weiterlesen

Holz-Kunststoff-Möbel mit Flammschutz

WPC-Platte ohne (oben) und mit (unten) Flammschutzausrüstung. © Fraunhofer WKI

WPC-Platte ohne (oben) und mit (unten) Flammschutzausrüstung.
© Fraunhofer WKI

Holz ist ein beliebtes Material für Wohnungseinrichtungen. Da es Wasser aufnimmt, können Möbel aus dem Naturstoff in Bädern jedoch fleckig werden oder modern. Fraunhofer-Forscher haben mit Partnern einen Werkstoff aus einem Holz-Kunststoff-Gemisch für den Möbelbau entwickelt. Er ist feuchteresistent und flammgeschützt.

In Gärten sind Holz-Polymer-Werkstoffe der neue Trend. Der ressourcenschonende Materialmix wird dort vor allem für Terrassendielen verwendet. Aber auch für Fassadenverkleidungen und Sichtschutzzäune haben sich diese Wood-Polymer Composites, kurz WPC, etabliert. Im EU-Projekt »LIMOWOOD« entwickeln Forscher des Fraunhofer-Instituts für Holzforschung WKI in Braunschweig gemeinsam mit Industriepartnern aus Belgien, Spanien, Frankreich und Deutschland  feuchteresistente WPC-Plattenwerkstoffe für Möbel, die im Pressverfahren hergestellt werden. Weiterlesen

Flexibles Glas für flexible Elektronik

Flexibilität bestimmt zukünftig viele Lebensbereiche. Neben dem Einsatz von OLED-Modulen in unterschiedlichen Displays wird das flächige „warme“ Licht, das die Augen nicht blendet, in falt- oder aufrollbaren Bildschirmen schon bald keine Utopie mehr sein. (Abbildung: tesa)

Flexibilität bestimmt zukünftig viele Lebensbereiche. Neben dem Einsatz von OLED-Modulen in unterschiedlichen Displays wird das flächige „warme“ Licht, das die Augen nicht blendet, in falt- oder aufrollbaren Bildschirmen schon bald keine Utopie mehr sein. (Abbildung: tesa)

Die drei Technologie-Unternehmen SCHOTT, tesa SE und VON ARDENNE haben sich im Konsortialprojekt KONFEKT zusammengeschlossen, um die Entwicklung von ultradünnem Glas-auf-Rolle für den Einsatz in Applikationsfeldern wie der organischen Elektronik, zum Beispiel in der Fertigung künftiger Generationen von OLED-Anwendungen, voranzutreiben. Ziel des Konsortiums ist es, wickelbares Glas durch Lamination mit funktionalen Klebebändern sowie durch das Aufbringen von speziellen Funktionsschichten zu veredeln. So soll ein einfach weiterzuverarbeitendes Substrat mit einzigartigen Eigenschaften für vielfältige Anwendungen in Rollenform bereitgestellt werden. Das Bundesministerium für Bildung und Forschung (BMBF) fördert diese Entwicklung für drei Jahre mit einer Summe von ca. 5,6 Millionen Euro insgesamt.
Weiterlesen

Schaumstoffe aus Holz

Zwei im Fraunhofer WKI gefertigte Platten aus Holzschaum © Manuela Lingnau / Fraunhofer WKI

Zwei im Fraunhofer WKI gefertigte Platten aus Holzschaum
© Manuela Lingnau / Fraunhofer WKI

Schaumstoffe setzen sich aus petrochemischen Kunststoffen zusammen – und sind damit nicht besonders umweltfreundlich. Abhilfe verspricht ein neuartiges Schaummaterial: Es besteht zu hundert Prozent aus Holz, ist klimafreundlich und recycelbar. Langfristig könnte der Holzschaum herkömmliche Schaumstoffe ersetzen, sei es bei Wärmedämmungen, Verpackungen oder Leichtbaumaterialien.

Schaumstoffe dämmen Häuser, polstern Waren beim Versand und dienen als Leichtbaumaterial. Denn diese Materialien sind leicht, lassen sich günstig produzieren und besitzen gute Dämmeigenschaften. Doch sie haben auch ein Manko: Sie basieren vor allem auf Erdöl oder Erdgas und sind folglich nicht besonders umweltfreundlich. Langfristig sollen Materialien aus nachwachsenden Naturstoffen die erdölbasierten Produkte ersetzen. Weiterlesen