Hart wie ein Diamant und verformbar wie Metall

TU-Wissenschaftler*innen entwickeln neues Material für die Technik von morgen

Smartphones mit großflächigen Glasgehäusen und Displays überzeugen zwar optisch, sind aber auch sehr anfällig für Risse und Kratzer. Um diese Schäden künftig zu vermeiden, bräuchte es ein Material, das die Härte eines Diamanten und die Verformbarkeit eines Metalls vereint. Ein Material, das dem Fund des heiligen Grals der Strukturmaterialien gleich käme. Professor Gerold Schneider von der Technischen Universität Hamburg und weitere Hamburger Materialforscherinnen und -forscher haben nun gemeinsam mit der University of California, Berkeley ein Hybridmaterial, einen so genannten Superkristall entwickelt, der diesem Ziel näher kommt. Damit könnte die Technik auf Gebieten wie der Elektronik, Photonik oder auch Energiespeicherung künftig kostengünstiger, robuster oder auch funktionaler werden.

Nano-Eindruck mit erzeugten Versetzungen und Verdichtung des Superkristalls. Grafik: TU Hamburg

Nano-Eindruck mit erzeugten Versetzungen und Verdichtung des Superkristalls. Grafik: TU Hamburg

Weiterlesen

Kompostierbare Displays für nachhaltige Elektronik

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Forschende des KIT entwickeln gedruckte Displays, die biologisch abbaubar sind

In den kommenden Jahren drohen die zunehmende Verwendung elektronischer Geräte in Gebrauchsgegenständen sowie neue Technologien im Zusammenhang mit dem Internet der Dinge, die Produktion von Elektronikschrott zu erhöhen. Eine umweltfreundlichere Produktion und ein nachhaltigerer Lebenszyklus sind hier von entscheidender Bedeutung, um Ressourcen zu sparen und Abfallmengen zu minimieren. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ist es erstmalig gelungen, Displays zu produzieren, deren Bioabbaubarkeit von unabhängiger Seite geprüft und bestätigt wurde. Weiterlesen

Edelmetallfreie Vernetzung von Siliconen

Matthias Nobis im Labor des WACKER-Instituts für Silicium Chemie in Garching Bild: Andreas Heddergott / TUM

Matthias Nobis im Labor des WACKER-Instituts für Silicium Chemie in Garching
Bild: Andreas Heddergott / TUM

Nachhaltiges Verfahren könnte Edelmetalle bei der Vernetzung von Siliconen ersetzen

Silicone haben sich im privaten und im professionellen Bereich bewährt. Damit aus dem flüssigen Vorprodukt das elastische und haltbare Polymer wird, benötigt man jedoch in vielen Fällen teure Edelmetalle als Katalysatoren. Einem Forschungsteam der Technischen Universität München (TUM) und des Münchner WACKER-Konzerns ist es nun gelungen, einen Vernetzungsprozess zu entwickeln, der ohne Edelmetalle auskommt.
Weiterlesen

Bessere Laserstrahlen durch neuen Lichtstreuungs-Trick

Eine völlig neue Methode für die Herstellung von extrem kurzen und energiereichen Laserpulsen

Laserpulse mit extrem hoher Energie spielen in der heutigen Forschung eine wichtige Rolle – Anwendungen reichen von der Atomphysik bis zur Untersuchung der Atmosphäre. Allerdings braucht man für viele Anwendungen Laserstrahlen mit einer höheren Wellenlänge als man sie mit herkömmlichen Festkörperlasern erzeugen kann. Schon lange forscht man daher an speziellen Tricks, mit denen sich die Wellenlänge eines Laserstrahls erhöhen lässt. Weiterlesen

Neuartiger Fotolack ermöglicht 3D-Druck kleinster poröser Strukturen

Farbwechsel: Der rechte, mit dem neuartigen Fotolack gedruckte Mikro-Zylinder erscheint weiß, weil in seiner schwammartigen Struktur das Licht gestreut wird, während der aus herkömmlichem Fotolack gedruckte Zylinder transparent erscheint. (Abb.: 3DMM2O)

Farbwechsel: Der rechte, mit dem neuartigen Fotolack gedruckte Mikro-Zylinder erscheint weiß, weil in seiner schwammartigen Struktur das Licht gestreut wird, während der aus herkömmlichem Fotolack gedruckte Zylinder transparent erscheint. (Abb.: 3DMM2O)

Forschende des Exzellenzclusters 3D Matter Made to Order erweitern die Möglichkeiten des Zwei-Photonen-Mikrodrucks

Forschende des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg haben einen Fotolack für den Zwei-Photonen-Mikrodruck entwickelt, mit dem erstmals dreidimen-sionale polymere Mikrostrukturen mit Hohlräumen in Nanogröße hergestellt werden können. Weiterlesen

Ein Roboter, der hochflexible Werkzeuge beherrscht

RoboCut kann auch Herzen schnitzen. (Bilder: The Computational Robotics Lab)

RoboCut kann auch Herzen schnitzen. (Bilder: The Computational Robotics Lab)

Wie berechnet man die koordinierten Bewegungen von zwei Roboterarmen, die ein hochflexibles Werkzeug präzise führen sollen? ETH-​Forschende haben dafür alle Aspekte der Optimierungsrechnungen in einen Algorithmus integriert. Mit dem Heissdrahtschneider werden unter anderem Bausteine für ein mörtelfreies Bauwerk entwickelt. Weiterlesen

Edelmetallcluster können Katalysatoren leistungsfähig machen und Ressourcen schonen

Schematische Abbildung eines Edelmetallkatalysators mit inaktiven Einzelatomen (links) und aktiven Clustern (rechts; Edelmetall: weiß; Trägermetall: gelb; Sauerstoff: rot). (Grafik: Florian Maurer, KIT).

Schematische Abbildung eines Edelmetallkatalysators mit inaktiven Einzelatomen (links) und aktiven Clustern (rechts; Edelmetall: weiß; Trägermetall: gelb; Sauerstoff: rot). (Grafik: Florian Maurer, KIT).

Katalysatoren aus Edelmetallen werden weltweit milliardenfach eingesetzt, etwa bei der Herstellung von Chemikalien, zur Energieerzeugung und zur Aufreinigung der Luft. Die dafür benötigten Rohstoffe sind jedoch teuer und ihre Vorkommen begrenzt. Sie optimal zu nutzen, ist das Ziel von Katalysatoren, die auf einzelnen Metallatomen basieren. Ein Forschungsteam des Karlsruher Instituts für Technologie (KIT) konnte nun zeigen, dass sich Edelmetallatome unter bestimmten Bedingungen zu Clustern zusammenschließen können, die reaktionsfreudiger sind als Einzelatome und so Abgase noch besser entfernen können. Weiterlesen

Effiziente Gastrennung dank poröser Flüssigkeiten

Poröse Flüssigkeiten als Membran: Mit diesem Verfahren könnten sich in der Kunststoffindustrie enorme Mengen Energie und damit CO2 einsparen lassen

Poröse Flüssigkeiten als Membran: Mit diesem Verfahren könnten sich in der Kunststoffindustrie enorme Mengen Energie und damit CO2 einsparen lassen. (Foto: Alexander Knebel, KIT)

Neues Material eröffnet die Möglichkeit, beim Abtrennen von Rohstoffen für die Kunststoffindustrie bis zu 80 Prozent Energie einzusparen

Ein Forscher des Karlsruher Instituts für Technologie (KIT) hat gemeinsam mit Partnern „poröse Flüssigkeiten“ entwickelt: In einem Lösemittel schweben – fein verteilt – Nanoteilchen, die Gasmoleküle verschiedener Größen voneinander trennen. Denn die Teilchen besitzen leere Poren, durch deren Öffnungen nur Moleküle einer bestimmten Größe eindringen können. Die porösen Flüssigkeiten lassen sich direkt einsetzen oder zu Membranen verarbeiten, die Propen als Ausgangsstoff für den weit verbreiteten Kunststoff Polypropylen effizient aus Gasgemischen trennen. Die bislang übliche energieaufwendige Destillation könnte somit ersetzt werden. Weiterlesen

Autonomer Roboter spielt mit NanoLEGO

Rastertunnelmikroskop der Forschungsgruppe um Dr. Christian Wagner (PGI-3) am Forschungszentrum Jülich

Rastertunnelmikroskop der Forschungsgruppe um Dr. Christian Wagner (PGI-3) am Forschungszentrum Jülich
Copyright: Forschungszentrum Jülich / Christian Wagner

Moleküle sind die Bausteine des Alltags. Die meisten Materialien setzen sich aus ihnen zusammen, vergleichbar mit einem Legomodell, das aus einer Vielzahl von unterschiedlichen Steinen besteht. Doch während man beim Lego einzelne Steine ganz einfach versetzen oder wegnehmen kann, ist das in der Nanowelt nicht so ohne weiteres möglich. Atome und Moleküle verhalten sich völlig anders als makroskopische Gegenstände und jeder Baustein braucht seine eigene „Bedienungsanleitung“. Jülicher und Berliner Wissenschaftler haben jetzt eine künstliche Intelligenz entwickelt, die selbstständig lernt, wie sie einzelne Moleküle mittels eines Rastertunnelmikroskops greifen und bewegen kann. Die Methode ist nicht nur die für die Forschung, sondern auch für neuartige Fertigungstechnologien wie den molekularen 3D-Druck relevant. Weiterlesen

Mikrolandschaften nach Plan für perfektes Schleifen

Mikroskopaufnahme: Beispiel einer mikrostrukturierten Schleifoberfläche

© Copyright: Shiqi Fang/Arbeitsgruppe Professor Dirk Bähre
Mikroskopaufnahme: Beispiel einer mikrostrukturierten Schleifoberfläche

Pyramiden und Würfel in Reih und Glied oder strahlenförmig angeordnete Noppen: Kleinste Strukturen in Haaresbreite machen neuartige Schleifwerkzeuge aus hartem Metall sehr präzise. Der Fertigungstechniker Professor Dirk Bähre und sein Team formen mit dem Laser speziell strukturierte Schleifoberflächen im Mikrometermaßstab. Die Spezial-Schleifwerkzeuge lassen sich mit elektrochemischem Abtragen auf Maß und in großer Zahl günstig herstellen. Die DFG fördert diese Forschung. Weiterlesen