Zuverlässige Leistungselektronik für die Elektromobilität

Eingebettetes Silizium-Carbid auf dem Weg zur Serienproduktion in der Elektromobilität.

© Volker Mai/Fraunhofer IZM
Eingebettetes Silizium-Carbid auf dem Weg zur Serienproduktion in der Elektromobilität.

Silizium-Carbid wird seit mehreren Jahren in der Forschung als vielversprechendes alternatives Material in der Halbleiter-Branche getestet. Im Projekt SiC Modul wollen Forscherinnen und Forscher des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM gemeinsam mit ihren Partnern den Leistungshalbleiter auf den Weg zur industriellen Fertigung bringen und somit die Effizienz des Antriebssystems von Elektrofahrzeugen und damit auch ihre Reichweite weiter erhöhen. Weiterlesen

Kostengünstigere Brennstoffzellen für Automobil und Flugzeug in Großserie

© Fraunhofer IPT
Geformtes Blechwerkstück: In ersten Tests formten die Aachener Ingenieure die erforderliche Oberflächenstruktur einer Bipolarplatte.

Ohne Abgase eine noch höhere Reichweite erzielen: Die Automobilindustrie und die Luftfahrtbranche setzen verstärkt auf alternative Antriebsformen und beziehen dabei auch wasserstoffbetriebene Brennstoffzellen in ihre Überlegungen ein. Damit die bislang hohen Herstellungskosten der Brennstoffzellen sinken und neue wasserstoff-elektrische Antriebe den Weg in den Markt finden, arbeitet das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit fünf Partnern aus Industrie und Wissenschaft im Forschungsprojekt »FlyGO« an neuen Konzepten und Systemen für die Großserienfertigung. Weiterlesen

Der Blick in Neuronale Netze

Künstliche Intelligenz, kurz KI, ist längst in unserem Alltag präsent und dringt in immer mehr Bereiche vor. Sprachassistenten etwa sind bereits als Helfer auf dem Smartphone, im Auto oder zu Hause Normalität geworden. Fortschritte im Bereich der KI beruhen vor allem auf der Verwendung Neuronaler Netze. Vergleichbar mit der Funktionsweise des menschlichen Gehirns verknüpfen sie mathematisch definierte Einheiten miteinander. Doch bisher wusste man nicht, wie ein Neuronales Netz Entscheidungen trifft. Forschende des Fraunhofer Heinrich-Hertz-Instituts HHI und der Technischen Universität Berlin haben nun eine Technik entwickelt, die erkennt, anhand welcher Kriterien KI-Systeme Entscheidungen fällen. Die neuartige Methode Spectral Relevance Analysis (SpRAy) basierend auf der Technik Layer-Wise Relevance Propagation erlaubt den Blick in die »Black Box«.

© Fraunhofer HHI Hier klassifiziert das KI-System ein Bild als Zug, da Schienen vorhanden sind.

Weiterlesen

Effizienter Katalysator zur Wasserspaltung

Hybridmaterial aus mit Kohlenstoffnitrid umhüllten SnIP-Nanofasern Bild: Pawan Kumar / University of Alberta

Ein Forschungsteam der Technischen Universität München (TUM) hat im Rahmen einer internationalen Kooperation einen effizienten Wasserspaltungskatalysator entwickelt. Er besteht aus einer Doppelhelix-Halbleiterstruktur, umhüllt mit Kohlenstoffnitrid. Dieser Katalysator ist ideal um billig und nachhaltig Wasserstoff zu erzeugen. Weiterlesen

Mikroskopische Schutzhülle für bessere Speicher

2D-Modell von Ni-reichen Kern-Schale-Partikeln: Bild a) kristallographische Orientierung der einzelnen Körner in einem Kerne-Schale-Partikel Bild b) das für die Rechnung verwendete Netz Bilder c) bis f) berechnete Zug- und Druckspannungs-Verteilungen im geladenen Zustand der Batterie für normale (c,e) und Kern-Schale-Partikel mit verringerten Intensitätsmaxima am Rand (d,f) Copyright: Robert Mücke / Forschungszentrum Jülich

Lithium-Ionen-Akkus sind mit ihrer langen Lebensdauer und hohen Energiedichte anderen wieder aufladbaren Batteriesystemen weit überlegen. Dennoch sind sie für viele Anwendungen, etwa Elektroautos, noch immer unzureichend. Einer der Gründe dafür liegt im Kathodenmaterial der Akkus. Wissenschaftler aus Jülich und Südkorea forschen an einem Werkstoff, der die Batterien künftig leistungsfähiger machen könnte.

Die Batterie ist das Herzstück eines jeden Elektrofahrzeugs. Momentan kommen dabei fast ausschließlich Lithium-Ionen-Akkus zum Einsatz. Sie vertragen viele Ladezyklen und ihre Energiedichte, bzw. Entladekapazität, hat sich seit ihrer Einführung in den frühen neunziger Jahren mehr als verdoppelt. Trotzdem sind selbst moderne Lithium-Akkus noch immer unzureichend für E-Fahrzeuge, die eine breitere Verbraucherbasis ansprechen können: zum einen wegen der hohen Kosten, doch vor allem wegen der immer noch zu kurzen Reichweite pro Ladung. Weiterlesen

Forscher entwickeln Roboterarme biegsam wie Elefantenrüssel: für große Greifer und winzige Endoskope

Sie können sich präzise um Windungen und Ecken schlängeln, bewegen sich frei in alle Richtungen: Die biegsamen Roboterarme, die Professor Stefan Seelecke und seine Forschergruppe an der Universität des Saarlandes entwickeln, haben keine steifen Gelenke, dafür aber Muskeln aus Formgedächtnis-Drähten. Diese brauchen weder Druckluft noch schweres Zubehör, sondern funktionieren nur mit elektrischem Strom. Das Material selbst hat Sensoreigenschaften, daher lassen sich die Arme ohne zusätzliche Sensoren steuern. Große Roboter-Rüssel können mit der neuen Technologie ebenso ausgestattet werden wie haarfeine Tentakel für endoskopische Operationen. Weiterlesen

Energiereiche Festkörperbatterie

Noch im Laborstadium: Komponenten der Lithium-Festkörperbatterie mit Hybridelektrolyt
Copyright: Forschungszentrum Jülich / T.Schlößer

Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt. Lithium gilt als ideales Elektrodenmaterial, mit dem sich die höchsten Energiedichten erreichen lassen. Das Metall ist sehr reaktiv, was einer Verwendung als Anode bisher entgegenstand. Möglich wurde der Einsatz jetzt durch zwei zusätzliche Lagen aus einem neuartigen Polymer. Diese schützen den keramischen Elektrolyten der Batterie und verhindern, dass sich das Metall auf zerstörerische Weise ablagert. In Labortests funktionierte das so gut, dass die Zellen über Hunderte Ladezyklen kaum an Kapazität verloren. Weiterlesen

Direktgekühlter Elektromotor aus Kunststoff

© Fraunhofer ICT Schnittdarstellung des Elektromotors. Kernstück des Motors bildet ein Stator aus zwölf Einzelzähnen, die mit einem Flachdraht hochkant umwickelt sind.

Sollen Elektroautos leichter werden, muss auch der Motor abspecken. Beispielsweise, indem man ihn aus faserverstärkten Kunststoffen herstellt. Forscherinnen und Forscher des Fraunhofer-Instituts für Chemische Technologie ICT entwickeln gemeinsam mit dem Karlsruher Institut für Technologie KIT ein neues Kühlkonzept, das den Einsatz von Kunststoffen als Gehäusematerial ermöglicht. Ein weiterer Vorteil des Konzepts: Die Leistungsdichte und Effizienz des Antriebs werden gegenüber dem Stand der Technik deutlich erhöht. Weiterlesen

Etiketten der Zukunft: Dresdner Physiker schreiben, lesen und radieren mit Licht

Ein leuchtendes Etikett, kontaktlos aufgedruckt auf eine Plastikfolie. Die leuchtende Schicht ist dünner als ein menschliches Haar. Der Aufdruck lässt sich berührungslos wieder löschen und durch ein anderes Muster ersetzen © M. Gmelch und H. Thomas, TU Dresden

Einem Team von Physikern unter Leitung von Prof. Sebastian Reineke von der Technischen Universität Dresden ist es gelungen, auf eine völlig neue Art Informationen in transparenten Folien zu speichern.

Prof. Reineke und seine LEXOS Gruppe am Institut für Angewandte Physik arbeiten mit transparenten Plastikfolien, die mit weniger als 50 µm dünner als ein menschliches Haar sind. In diese Plastikfolien sind leuchtende organische Moleküle eingebracht. Diese Moleküle befinden zunächst in einem deaktivierten, dunklen Zustand. Durch lokale Bestrahlung mit ultraviolettem Licht lassen sie sich aktivieren und beginnen zu leuchten. Mit Hilfe einer Maske oder eines Laserschreibers können auf diese Weise Muster in die Folie geschrieben werden, deren Auflösung die von aktuellen Laserdruckern erreicht. Durch Bestrahlung mit infrarotem Licht lässt sich das aufgedruckte Muster oder die Leuchtschrift jederzeit wieder vollständig aus der Folie entfernen. Weiterlesen

Keramiken aus dem „Sand“ des roten Planeten

Vasen, Ringe und Tabletten aus Marskeramik in unterschiedlichen Brennstadien
© TU Berlin/David Karl

Wissenschaftler des Fachgebiets Keramische Werkstoffe an der TU Berlin haben in Kooperation mit der Bundesanstalt für Materialforschung und -prüfung erstmals komplexe Bauteile aus simuliertem Marsboden gefertigt und die theoretische Möglichkeit gezeigt, stabile Gefäße wie Vasen nur mit Ressourcen des roten Planeten zu fertigen. Mit ihrem Ansatz möchten die Wissenschaftler einen Beitrag für die Forschungen zur Langzeiterkundung des roten Planeten leisten.

Die Ziele sind ambitioniert: In den 2030er-Jahren plant die US-amerikanische Raumfahrtbehörde NASA mit ihren internationalen Partnerinnen und Partnern den ersten bemannten Flug zum Planeten Mars – eine Reise in die Tiefen des Weltalls, die von Forscherinnen und Forschern weltweit begleitet wird. Ein Team der TU Berlin vom Fachgebiet Keramische Werkstoffe am Institut für Werkstoffwissenschaften und -technologien der Fakultät III Prozesswissenschaften befasst sich ebenfalls mit Experimenten, die eine mögliche Reise zum roten Planeten in den Fokus stellen. Weiterlesen