ACHEMA 2024: Vielfältiges Vortragsprogramm für die Welt der Prozessindustrie

© DECHEMA e.V. / Markus Püttmann

© DECHEMA e.V. / Markus Püttmann

Die ACHEMA 2024 verzahnt erneut das Vortrags- und Rahmenprogramm vollständig mit der Ausstellung. Im Jahr 2022 hatte die ACHEMA den Kongress und die sogenannten Innovation Stages erstmals in die Ausstellung integriert. Aufgrund des positiven Feedbacks wird das Konzept auch dieses Jahr fortgeführt. Insgesamt warten in den Vortragssälen und auf den Bühnen in der Ausstellung mehr als 750 Beiträge auf die Besucher.

„Wissenschaft und Industrie im Dialog ist seit jeher Credo der DECHEMA und seit der letzten ACHEMA auch gelebte Praxis im Vortrags- und Kongressprogramm. Der Erfolg gibt uns dabei recht: Mit mehr als 20.000 Zuhörern waren die Besucherzahlen im Jahr 2022 deutlich höher als bei der ACHEMA 2018, die insgesamt mehr Teilnehmer hatte“, so Dr. Andreas Förster, Geschäftsführer des DECHEMA e.V. und damit Veranstalter der ACHEMA. Das Kongressprogramm setzt dieses Jahr Schwerpunkte in den Themen Wasserstoff, Nachhaltigkeit, Kreislaufwirtschaft und Digitalisierung. Auf den sechs Innovation Stages in der Ausstellung und in den fünf Highlight-Sessions des Kongresses greift die ACHEMA 2024 diese und weitere Top-Themen der Prozessindustrie auf. Weiterlesen

Verrückte Tools!

© Mikron Tool

© Mikron Tool

Die 250 Mitarbeiter starke Mikron Tool positioniert sich mit der Weiterentwicklung ihrer «Crazy Tools» als Technologieführer in der Hochleistungszerspanung anspruchsvoller Materialien wie Edelstahl, Titan und Kobalt-Chrom im kleinen bis mittleren Durchmesserbereich. Dabei konzentriert sich das Unternehmen auf die Herstellung von Bohr-, Fräs- und Sonderwerkzeugen. Das jüngste Beispiel: Die neue Formfräser-Entwicklung, die die Hauptzeit beim Schlichten einer Knochenplatte aus Reintitan Grad 2 (3.7035 – EN Ti 2 / ASTM B348) um 92 Prozentpunkte reduziert. Verrückt!

Weiterlesen

Innovative Rechenmethode enthüllt Hochleistungs­keramiken für extreme Umgebungen

Künstlerischer Blick auf das Kristallgitter einer Hochentropie-Keramik, die so hitzebeständig und elektronisch belastbar ist, dass sie Geräten den Betrieb bei lavaähnlichen Temperaturen ermöglichen könnte.

Künstlerischer Blick auf das Kristallgitter einer Hochentropie-Keramik, die so hitzebeständig und elektronisch belastbar ist, dass sie Geräten den Betrieb bei lavaähnlichen Temperaturen ermöglichen könnte. ( © B. Schröder/HZDR)

Ein internationales Forschungsteam hat ein Verfahren entwickelt, um neuartige Materialien zu berechnen, die bei extrem hohen Temperaturen von mehreren tausend Grad Celsius funktionieren. Diese leistungsfähigen Keramiken könnten eines Tages die Grundlage für robustere Beschichtungen, Batterien und strahlungsbeständige Geräte bilden.

Elektronische Geräte, die lavaähnlichen Temperaturen von mehr als 1.000 Grad Celsius standhalten? Eine neue Klasse von Hochleistungsmaterialien könnte das bald möglich machen. Ein Forschungsteam unter der Leitung von Materialwissenschaftler:innen der Duke University (USA) hat eine Berechnungsmethode vorgestellt, mit der sich schnell Vertreter einer neuen Klasse von Materialien entwickeln lassen, die so hitzebeständig und elektronisch stabil sind, dass sie Geräte in die Lage versetzen könnten, bei extremer Hitze zu funktionieren. Bei diesen Materialien handelt es sich um Keramiken aus sogenannten Überangsmetallcarbonitriden oder -boriden. Dieser spezielle Typ von Verbindungen bildet stark ungeordnete Strukturen, sogenannte Hochentropiephasen. Durch die zufällige Verteilung der Kationen im Material kommt es dabei in hohem Maße zu Reflexionen und Interferenzen von Wellen, woraus sich besondere mechanische, elektronische und thermische Eigenschaften ergeben. Weiterlesen

Digitaler Zwilling beschleunigt Solarforschung

Solarflächen der Zukunft: flexibel, durchsichtig und mit immenser Einsatzvielfalt. (Bild: FAU/DALL-E/runwayml)

Solarflächen der Zukunft: flexibel, durchsichtig und mit immenser Einsatzvielfalt. (Bild: FAU/DALL-E/runwayml)

Künstliche Intelligenz soll die Suche nach dem perfekten Material für Solarmodule um den Faktor zehn beschleunigen. Daran arbeitet ein interdisziplinäres Team der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Die Forschenden aus der Materialwissenschaft, dem Ingenieurwesen, der Chemie und der Informatik wollen einen digitalen Zwilling implementieren, der Materialkombinationen besser charakterisiert und Hochdurchsatzexperimente schneller zum Erfolg führt. Weiterlesen

KI-basierte Prozessüberwachung beim Rührreibschweißen

 Roboterbasiertes FSW unter Zuhilfenahme eines 6-Achs Industrieroboters für einen hochflexiblen Einsatz und komplexe Geometrien. ©KUKA Deutschland GmbH

Roboterbasiertes FSW unter Zuhilfenahme eines 6-Achs Industrieroboters für einen hochflexiblen Einsatz und komplexe Geometrien. ©KUKA Deutschland GmbH

Ob Seitenwände von Hochgeschwindigkeitszügen, Batteriewannen von Elektrofahrzeugen oder Tankstrukturen von Trägerraketen: Viele Industriezweige stellen besondere Anforderungen an Fügeverbindungen, sprich Schweißnähte. Für einige Anwendungen hat sich das Rührreibschweißen (kurz FSW, eng. Friction Stir Welding) als besonders innovative Fügetechnik durchgesetzt. Um die Qualität der Nähte schon während des Prozesses zu erfassen und damit Zeit und Kosten bei der nachträglichen Prüfung zu sparen, forscht das KI-Produktionsnetzwerk an der Universität Augsburg mit drei schlagkräftigen Partnern – der BCMtec GmbH, der Grenzebach Maschinenbau GmbH sowie der KUKA AG – an einem zuverlässigen, KI-basierten Prozessüberwachungssystem. Weiterlesen

Mit der Natur gegen Materialermüdung

 Korallen sind den Gezeiten und anderen Meeresströmungen ausgesetzt. Die Evolution hat dafür gesorgt, dass sie trotzdem stabil bleiben.

© Hiroko Yoshii
Korallen sind den Gezeiten und anderen Meeresströmungen ausgesetzt. Die Evolution hat dafür gesorgt, dass sie trotzdem stabil bleiben.

Wissenschaftler*innen der Universitäten Erlangen-Nürnberg, Bayreuth und Haifa in Israel, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam, der Charité – Universitätsmedizin Berlin sowie der TU Berlin als Konsortialführerin haben eine neue DFG-Forschungsgruppe gegründet. Ziel ist die Entwicklung neuer Materialien durch Bioinspiration. Sie sollen widerstandsfähiger sein gegen das gefährliche Phänomen der Materialermüdung, die ohne Vorwarnung zum Materialversagen und damit zu schweren Unfällen führen kann. Weiterlesen

Rückgewinnen statt schreddern: Batterien effizienter recyceln

Im Projekt DiRecReg entwickeln vier Institute des KIT und sieben Unternehmen eine vollständige Prozesskette, um gebrauchte Batterien und Ausschuss besser zu verwerten. (Foto: wbk, KIT)

Im Projekt DiRecReg entwickeln vier Institute des KIT und sieben Unternehmen eine vollständige Prozesskette, um gebrauchte Batterien und Ausschuss besser zu verwerten. (Foto: wbk, KIT)

Der Markt für E-Autos wächst rapide und damit der Bedarf an Lithium-Ionen-Batterien (LIB). Auch deren Recycling ist ein wichtiger Baustein im Produktionskreislauf. Aktuelle Verfahren zerlegen die aktiven Batteriematerialien in ihre molekularen Bestandteile – unter hohem Energie- und Chemikalieneinsatz. In einem groß angelegten Verbundprojekt entwickeln daher Forschende des Karlsruher Instituts für Technologie (KIT) und Partner aus Industrieunternehmen eine vollständige Prozesskette, um gebrauchte Batterien effizienter zu verwerten, in dem sie die aktiven Komponenten funktionserhaltend zurückgewinnen. Das Bundesforschungsministerium fördert das Projekt mit knapp drei Millionen Euro. Weiterlesen

Der Fingerabdruck des Materials – schnell und sicher prüfen mit KI

 Das Team hinter sensAI: Dr.-Ing. Florian Linscheid (l.) und Dr.-Ing. Marco Korkisch (r.). Tobias Seemiller/Universität Augsburg

Das Team hinter sensAI: Dr.-Ing. Florian Linscheid (l.) und Dr.-Ing. Marco Korkisch (r.). Tobias Seemiller/Universität Augsburg

sensAI kann in der Produktion Ressourcen sparen

Zerstörungsfrei, kostengünstig und kontaktlos mit Hilfe von KI: Mit sensAI wollen die beiden Augsburger Wissenschaftler Dr.-Ing. Marco Korkisch und Dr.-Ing. Florian Linscheid den Prüf-Ansatz von Materialeigenschaften revolutionieren und meldeten ihre Idee bereits zum Patent an. Das Team des KI-Produktionsnetzwerks an der Universität Augsburg unterstützt sensAI auf ihrem Weg zur Gründung. Weiterlesen

Mehr Gehirn für Hardware und Software

Rastertunnelmikrosopie-Aufnahme einer Oberfläche mit einzelnen Atomen: Solche Atome nutzen die Forschenden, um neuromorphe Materialien zu entwickeln. (Bildgröße: 5 x 7 Nanometer) Foto: Institut für Funktionelle Materialien und Quantentechnologie


Rastertunnelmikrosopie-Aufnahme einer Oberfläche mit einzelnen Atomen: Solche Atome nutzen die Forschenden, um neuromorphe Materialien zu entwickeln. (Bildgröße: 5 x 7 Nanometer)
Foto: Institut für Funktionelle Materialien und Quantentechnologie

Lernfähige Algorithmen sind intelligent, doch für manche technische Anwendungen, wie etwa autonomes Fahren, noch nicht smart genug. Wissenschaftler:innen erforschen nun neuromorphe Materialien, um Software und Hardware schneller, effizienter und flexibler zu machen.

Entspannt zurücklehnen und die Gegend bewundern, während das Auto autonom durch die Stadt fährt – das gibt es trotz der technischen Möglichkeiten noch nicht. Konventionelle Computer-Hardware und Software verfügen über ungenügend Schnittstellen, um im Notfall mit derselben menschlichen Reaktionsfähigkeit einzugreifen. Weiterlesen

Leichte Bauteile für Autos und Maschinen: Künstliche Muskeln machen Antriebe klein und nachhaltig

Mit künstlichen Muskeln, Formgedächtnisdrähten aus Nickel-Titan, bauen die Forscher kompakte technische Bauteile. Hierbei kommt auch ein patentierter Zahnstangenmechanismus zum Einsatz, der Linearbewegung in eine Rotation überführt wie bei diesem Prototyp, der auf der Hannover Messe gezeigt wird. Doktorand Carmelo Pirritano forscht an den neuartigen smarten Antrieben.

© Oliver Dietze
Mit künstlichen Muskeln, Formgedächtnisdrähten aus Nickel-Titan, bauen die Forscher kompakte technische Bauteile. Hierbei kommt auch ein patentierter Zahnstangenmechanismus zum Einsatz, der Linearbewegung in eine Rotation überführt wie bei diesem Prototyp, der auf der Hannover Messe gezeigt wird. Doktorand Carmelo Pirritano forscht an den neuartigen smarten Antrieben.

Wo Elektromotoren oder -magnete in technischen Bauteilen zu groß oder zu schwer sind, können die neuartigen Antriebe des Forschungsteams der Professoren Stefan Seelecke und Paul Motzki von der Universität des Saarlandes helfen, Platz, Gewicht und Energie zu sparen. Ihre Formgedächtnisantriebe kommen mit einem Durchmesser von 300 bis 400 Mikrometern aus, sind leicht und energieeffizient. Künstliche Muskeln aus Nickel-Titan machen kompakte Bauteile auf kleinstem, aber auch großem Raum möglich.

Immer mehr Technik muss heute auf kleinem Raum unterkommen. Der Platz ist knapp in Auto, Flugzeug und in sonstigen Maschinen und Geräten. Das Ganze darf auch nicht zu schwer werden. Leichtere Verkehrsmittel etwa brauchen weniger Treibstoff, Batterien von E-Autos halten länger bei leichtem Gepäck. Eine neuartige Technologie könnte künftig dabei helfen, durch kleinere und leichtere technische Bauteile nicht nur weniger Gewicht auf die Waage zu bringen, sondern zusätzlich auch weniger Energie zu verbrauchen. Das Forschungsteam der Spezialisten für intelligente Materialsysteme Stefan Seelecke und Paul Motzki entwickelt die neuen Bauteile an der Universität des Saarlandes und am Saarbrücker Zentrum für Mechatronik und Automatisierungstechnik Zema. Sie wollen diese zur Katalogware machen. Weiterlesen