Lernfähige Algorithmen ermöglichen schnellere Entwicklung von Produkten im Elektromaschi­nenbau

 © Panthermedia

© Panthermedia

Wissenschaftler der TU Dresden unter Leitung von Prof. Wilfried Hofmann von der Professur für Elektrische Maschinen und Antriebe haben einen wichtigen Schritt zum Einsatz von künstlicher Intelligenz (KI) im Entwurf von Elektromaschinen getan. Nach 18 Monaten intensiver Forschung entstanden zwei Programme, deren lernfähige Algorithmen den Designprozess elektrischer Motoren effizienter und zukunftsträchtiger gestalten können. Weiterlesen

Grüner Wasserstoff: Transport im Erdgasnetz

Die insgesamt 19 Kanäle in der Kohlenstoff-Membran vergrößern deren Oberfläche und ermöglichen somit einen größeren Stoffdurchsatz.

Forschende der Fraunhofer-Gesellschaft haben eine Technologie entwickelt, mit der sich Wasserstoff und Erdgas kostengünstig und effizient voneinander trennen lassen. Die Membran-Technologie macht es damit möglich, die beiden Stoffe gemeinsam durch das bundesweite Erdgasnetz zu leiten und am Zielort voneinander zu trennen. Für den Transport und die Verteilung des Energieträgers Wasserstoff ist dies ein großer Fortschritt. Weiterlesen

Pflanzliche Proteine ersetzen erdölbasierte Rohstoffe

 © Fraunhofer IVV Nach der Entölung der Rapssaat verbleiben proteinreiche Reststoffe (Rapsschrot und -presskuchen).

© Fraunhofer IVV Nach der Entölung der Rapssaat verbleiben proteinreiche Reststoffe (Rapsschrot und -presskuchen).

Proteine gehören wie Cellulose, Lignin und Fette zu den nachwachsenden Rohstoffen. Ihr Potenzial für die chemische Industrie wird bisher kaum genutzt. Dies wollen Forscherteams des Fraunhofer-Instituts für Verfahrenstechnik und Verpackung IVV gemeinsam mit Partnern ändern und die vielversprechenden technofunktionellen Eigenschaften pflanzlicher Proteine für industrielle Anwendungen nutzen. Ziel des Projekts TeFuProt: die Abkehr vom Erdöl, hin zu nachwachsenden Rohstoffen. Weiterlesen

Wissenschaftler:innen entwickeln neues Verfahren für den Bau ultraleichter Materialien

Möglichst leicht und zugleich möglichst stabil. Das sind die Anforderungen an moderne Leichtbaustoffe, wie sie im Flugzeugbau und in der Automobilindustrie zum Einsatz kommen. Ein Forschungsteam der Technischen Universität Hamburg und des Helmholtz-Zentrums Geesthacht (HZG) hat nun ein neues Bauprinzip für künftige Ultraleicht-Materialien entwickelt: Nanometerkleine Metallstreben, die auf separaten Hierarchieebenen ineinander geschachtelte Netzwerke bilden, sorgen für eine erstaunliche Festigkeit. Weiterlesen

Wasserstoffantriebe für E-Scooter und Co.

© Fraunhofer IFAM POWERPASTE

© Fraunhofer IFAM
POWERPASTE

Wasserstoff gilt als Antrieb der Zukunft. Während bereits erste Wasserstoff-Autos über deutsche Straßen fahren, ist der bisher übliche Drucktank für E-Scooter jedoch nicht handhabbar. Die POWERPASTE liefert eine Alternative: In ihr lässt sich Wasserstoff auf sichere Weise chemisch speichern, einfach transportieren und ohne teure Tankstellen-Infrastruktur nachtanken. Ein Forscherteam am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden hat die Paste entwickelt, die auf Magnesiumhydrid basiert. Weiterlesen

Energy-Harvesting: Gedruckte thermoelektrische Generatoren für die Energiegewinnung

Durch neu entwickelte Tinten und spezielle Produktionstechniken, wie die Origami-Technik, lassen sich kostengünstig thermoelektrische Generatoren für verschiedenste Anwendungen herstellen. (Foto: Andres Rösch, KIT)

Durch neu entwickelte Tinten und spezielle Produktionstechniken, wie die Origami-Technik, lassen sich kostengünstig thermoelektrische Generatoren für verschiedenste Anwendungen herstellen. (Foto: Andres Rösch, KIT)

Forschende des KIT entwickeln Druckverfahren für kostengünstige, dreidimensionale thermoelektrische Generatoren

Thermoelektrische Generatoren, kurz TEGs, wandeln Umgebungswärme in elektrische Energie um. Sie bieten eine wartungsfreie, umweltfreundliche und autarke Stromversorgung für die stetig wachsende Zahl von Sensoren und Geräten für das Internet der Dinge (IoT) und eine Möglichkeit für die Rückgewinnung von Abwärme. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) haben nun dreidimensionale Bauteilarchitekturen mit neuartigen, druckbaren thermoelektrischen Materialien entwickelt. Diese könnten einen Meilenstein für die Nutzung kostengünstiger TEGs darstellen. Weiterlesen

Superkondensatoren statt Batterien

Graphen-Hybride (links) aus metallorganischen Netzwerken (metal organic frameworks, MOF) und Graphensäure ergeben eine hervorragende positive Elektrode für Superkondensatoren, die damit eine ähnliche Energiedichte erreichen, wie Nickel-Metallhydrid-Akkus. Bild: J. Kolleboyina / IITJ

Graphen-Hybride (links) aus metallorganischen Netzwerken (metal organic frameworks, MOF) und Graphensäure ergeben eine hervorragende positive Elektrode für Superkondensatoren, die damit eine ähnliche Energiedichte erreichen, wie Nickel-Metallhydrid-Akkus.
Bild: J. Kolleboyina / IITJ

Einem Team um Roland Fischer, Professor für Anorganische und Metallorganische Chemie an der Technischen Universität München (TUM) ist es gelungen, hocheffiziente Superkondensatoren zu entwickeln. Basis des Energiespeichers ist ein neuartiges, leistungsfähiges und dabei nachhaltiges Graphen-Hybridmaterial, das vergleichbare Leistungsdaten aufweist wie aktuell verwendete Batterien und Akkus.
Weiterlesen

Thermomagnetische Generatoren wandeln Abwärme auch bei kleinen Temperaturunterschieden in Strom

Die thermomagnetischen Generatoren basieren auf magnetischen Dünnschichten mit stark temperaturabhängigen Eigenschaften. (Foto: IMT/KIT)

Die thermomagnetischen Generatoren basieren auf magnetischen Dünnschichten mit stark temperaturabhängigen Eigenschaften. (Foto: IMT/KIT)

Die Verwertung von Abwärme trägt wesentlich zu einer nachhaltigen Energieversorgung bei. Wissenschaftlerinnen und Wissenschaftler des Karlsruher Institut für Technologie (KIT) und der Universität Tōhoku in Japan sind dem Ziel, Abwärme bei geringen Temperaturdifferenzen in Strom zu wandeln, nun wesentlich näher gekommen. Ihnen ist es gelungen, bei thermomagnetischen Generatoren, die auf Dünnschichten einer Heusler-Legierung basieren, die elektrische Leistung im Verhältnis zur Grundfläche um den Faktor 3,4 zu steigern. Weiterlesen

Hart wie ein Diamant und verformbar wie Metall

TU-Wissenschaftler*innen entwickeln neues Material für die Technik von morgen

Smartphones mit großflächigen Glasgehäusen und Displays überzeugen zwar optisch, sind aber auch sehr anfällig für Risse und Kratzer. Um diese Schäden künftig zu vermeiden, bräuchte es ein Material, das die Härte eines Diamanten und die Verformbarkeit eines Metalls vereint. Ein Material, das dem Fund des heiligen Grals der Strukturmaterialien gleich käme. Professor Gerold Schneider von der Technischen Universität Hamburg und weitere Hamburger Materialforscherinnen und -forscher haben nun gemeinsam mit der University of California, Berkeley ein Hybridmaterial, einen so genannten Superkristall entwickelt, der diesem Ziel näher kommt. Damit könnte die Technik auf Gebieten wie der Elektronik, Photonik oder auch Energiespeicherung künftig kostengünstiger, robuster oder auch funktionaler werden.

Nano-Eindruck mit erzeugten Versetzungen und Verdichtung des Superkristalls. Grafik: TU Hamburg

Nano-Eindruck mit erzeugten Versetzungen und Verdichtung des Superkristalls. Grafik: TU Hamburg

Weiterlesen

Kompostierbare Displays für nachhaltige Elektronik

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Forschende des KIT entwickeln gedruckte Displays, die biologisch abbaubar sind

In den kommenden Jahren drohen die zunehmende Verwendung elektronischer Geräte in Gebrauchsgegenständen sowie neue Technologien im Zusammenhang mit dem Internet der Dinge, die Produktion von Elektronikschrott zu erhöhen. Eine umweltfreundlichere Produktion und ein nachhaltigerer Lebenszyklus sind hier von entscheidender Bedeutung, um Ressourcen zu sparen und Abfallmengen zu minimieren. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ist es erstmalig gelungen, Displays zu produzieren, deren Bioabbaubarkeit von unabhängiger Seite geprüft und bestätigt wurde. Weiterlesen