Leichte Bauteile für Autos und Maschinen: Künstliche Muskeln machen Antriebe klein und nachhaltig

Mit künstlichen Muskeln, Formgedächtnisdrähten aus Nickel-Titan, bauen die Forscher kompakte technische Bauteile. Hierbei kommt auch ein patentierter Zahnstangenmechanismus zum Einsatz, der Linearbewegung in eine Rotation überführt wie bei diesem Prototyp, der auf der Hannover Messe gezeigt wird. Doktorand Carmelo Pirritano forscht an den neuartigen smarten Antrieben.

© Oliver Dietze
Mit künstlichen Muskeln, Formgedächtnisdrähten aus Nickel-Titan, bauen die Forscher kompakte technische Bauteile. Hierbei kommt auch ein patentierter Zahnstangenmechanismus zum Einsatz, der Linearbewegung in eine Rotation überführt wie bei diesem Prototyp, der auf der Hannover Messe gezeigt wird. Doktorand Carmelo Pirritano forscht an den neuartigen smarten Antrieben.

Wo Elektromotoren oder -magnete in technischen Bauteilen zu groß oder zu schwer sind, können die neuartigen Antriebe des Forschungsteams der Professoren Stefan Seelecke und Paul Motzki von der Universität des Saarlandes helfen, Platz, Gewicht und Energie zu sparen. Ihre Formgedächtnisantriebe kommen mit einem Durchmesser von 300 bis 400 Mikrometern aus, sind leicht und energieeffizient. Künstliche Muskeln aus Nickel-Titan machen kompakte Bauteile auf kleinstem, aber auch großem Raum möglich.

Immer mehr Technik muss heute auf kleinem Raum unterkommen. Der Platz ist knapp in Auto, Flugzeug und in sonstigen Maschinen und Geräten. Das Ganze darf auch nicht zu schwer werden. Leichtere Verkehrsmittel etwa brauchen weniger Treibstoff, Batterien von E-Autos halten länger bei leichtem Gepäck. Eine neuartige Technologie könnte künftig dabei helfen, durch kleinere und leichtere technische Bauteile nicht nur weniger Gewicht auf die Waage zu bringen, sondern zusätzlich auch weniger Energie zu verbrauchen. Das Forschungsteam der Spezialisten für intelligente Materialsysteme Stefan Seelecke und Paul Motzki entwickelt die neuen Bauteile an der Universität des Saarlandes und am Saarbrücker Zentrum für Mechatronik und Automatisierungstechnik Zema. Sie wollen diese zur Katalogware machen. Weiterlesen

Metamaterialien: Zeitkristall bringt Licht in Schwung

Forschende des KIT entwickeln erstmals zweidimensionalen photonischen Zeitkristall – Anwendung verspricht Fortschritte in der drahtlosen Kommunikation und bei Lasern

Photonische Zeitkristalle, deren Eigenschaften sich periodisch ändern, versprechen wesentliche Fortschritte in Mikrowellentechnik, Optik und Photonik. Forschende am Karlsruher Institut für Technologie (KIT) haben nun zusammen mit Partnern an der Aalto University und der Stanford University erstmals einen zweidimensionalen photonischen Zeitkristall hergestellt und wichtige Anwendungen demonstriert. Ihr Ansatz vereinfacht die Herstellung photonischer Zeitkristalle und kann die Effizienz künftiger Kommunikationssysteme verbessern.

Ein photonischer Zeitkristall in 2D kann Freiraum- und Oberflächenwellen verstärken. (Grafik: Dr. Xuchen Wang, KIT)

Ein photonischer Zeitkristall in 2D kann Freiraum- und Oberflächenwellen verstärken. (Grafik: Dr. Xuchen Wang, KIT)

Weiterlesen

20 Jahre sichere Infrarot-Temperaturmessung

20 Jahre sichere Infrarot-TemperaturmessungOptris begeht Jubiläum

Zwei Jahrzehnte Innovation in Infrarot: Die Berliner Optris GmbH kümmert sich seit 2003 um die zielgenaue, zuverlässige und berührungslose Temperaturmessung in vielen verschiedenen Industrien und der Forschung. Dabei hat es das Unternehmen immer geschafft, neue Technologien zu entwickeln und einzusetzen. Auf die Infrarotthermometer und Wärmebildkameras verlassen sich mittlerweile Anwender aus aller Welt – und das natürlich mit Know-How Made in Germany

2003 hat Geschäftsführer Dr.-Ing. Ulrich Kienitz Optris mit dem Ziel gegründet, das Angebot an messenden Temperatursensoren um innovative Mess- und Anwendungsprinzipien zu bereichern. Weiterlesen

Smart Factory Services – So gelingt der Umbau zur Smart Factory

Um Betriebe individuell beim Auf- und Ausbau ihrer Smart Factory zu unterstützen, hat der Systemhersteller KELCH ein modulares Gesamtkonzept entwickelt. Die so genannten Smart Factory Services sind auf den Bedarf von zerspanenden Betrieben zugeschnitten und bestehen aus flexibel kombinierbaren Bausteinen. Das bietet Fertigungsbetrieben die Möglichkeit, ausschließlich die Lösungen anzufordern, die sie tatsächlich benötigen – sei es, um Prozesse und Produkte zu verbessern, Kosten einzusparen oder um die Produktivität und Qualität zu erhöhen. Auch im Betrieb schon vorhandene Werkzeuge und Geräte lassen sich integrieren.

Smart Factory

(Bildquelle: Kelch)

Weiterlesen

Stationäre Arbeitsplattformen als Zugang und Arbeitsplatz für Industrieanlagen von KRAUSE für die KAMAX GmbH & Co. KG – Werk Homberg

Die KAMAX Gruppe ist ein Hersteller von hochfesten Verbindungselementen und komplexen Kaltformteilen für die Mobilitätsbranche mit Sitz in Homberg (Ohm) in Hessen. Das Unternehmen wurde 1935 gegründet. Heute ist es an 20 Standorten in Europa, Asien und Nordamerika vor allem für große Automobilhersteller tätig.

Zur Erhöhung der Sicherheit bei Wartungs- und Reparaturarbeiten wurden drei stationäre Arbeitsplattformen konstruiert, die an die Ofendecke zweier Anlassöfen und eines Härteofens und die dortigen Gegebenheiten angepasst wurden. Die Ofendecke der Öfen wurde mit Gitterrost-Plattformen und Geländern eingekleidet. Der Zugang erfolgt über eine einhängbare Stufenleiter.

Stationäre Arbeitsplattform als Zugang und Arbeitsplatz für Industrieanlagen

Stationäre Arbeitsplattform als Zugang und Arbeitsplatz für Industrieanlagen

Weiterlesen

Weltweite Lancierung der CrazyService Products

Kundenprojekte haben bei dem Schweizer Werkzeugspezialisten Mikron Tool, dessen Kernkompetenz die Zerspanung schwerer und schwierigster Materialien im Mikrobereich ist, eine lange Tradition. Zunächst bestanden diese in der Durchführung von Werkzeugtests und der Entwicklung kundenspezifischer Lösungen zur Vertriebsunterstützung. Später wurden die Aufgaben komplexer und die Anfragen, gesamte Bearbeitungsprozesse effizienter zu gestalten, nahmen zu.

Das Technology Center verfügt über modernste 5-Achs-Bearbeitungszentren, vertikale High-Speed BAZs, 8-Achsen Langdrehautomaten und einem jüngst eingetroffenen kompakten 6-Seiten-Turn & Mill Komplett-BAZ.Bild: Mikron Tool

Das Technology Center verfügt über modernste 5-Achs-Bearbeitungszentren, vertikale High-Speed BAZs, 8-Achsen Langdrehautomaten und einem jüngst eingetroffenen kompakten 6-Seiten-Turn & Mill Komplett-BAZ. Bild: Mikron Tool

Outsourcen von Projekten liegt im Trend

Zudem spürte Mikron Tool, dass viele Unternehmen Interesse daran hatten, ihre Versuchsprojekte auszulagern, um wertvolle betriebsinterne Ressourcen wie Maschinen, Manpower und Zeit nicht zu blockieren. Damit entstand die Idee, die Kapazitäten und betriebsinterne Kompetenz von Mikron Tool in Bezug auf Werkzeugherstellung, Materialwissenschaft und Prozesstechnologie in den Dienst der Kunden zu stellen. Weiterlesen

Mit CSvision zur robusten Prozessüberwachung in Echtzeit

Eine Spanne von 250 °C bis 3000 °C: Mit der neuen Quotientenpyrometer-Serie CSvision des Berliner Infrarotspezialisten Optris ist es möglich, die Temperatur von Metallen, Schmelzen oder Keramik berührungslos, sicher und zuverlässig aus unterschiedlichen Entfernungen zu messen.

Bildquelle: Optris GmbH

Bildquelle: Optris GmbH

Infrarotpyrometer müssen großen Ansprüchen gerecht werden: Speziell in der  Metallurgie kommen sie häufig unter widrigen Bedingungen zum Einsatz, in denen sie aber jederzeit zuverlässig Ergebnisse liefern sollen. Oft erschweren Rauch, Dampf oder Staub die freie Sicht auf das Messobjekt und beeinflussen das Messsignal.
Quotientenpyrometer liefern unter diesen Bedingungen trotzdem stabile Messwerte – im Vergleich zu Einkanalpyrometern sogar bei einer verschmutzten Optik oder bei Objekten, die sich innerhalb des Messfeldes bewegen (z.B. Metallstäbe oder –Drähte). Weiterlesen

Wie Mikroplastik in der Umwelt entsteht

Abbildung 1 – Darstellung dominierender Umwelteinflüsse auf Polymere in natürlichen Habitaten. [2]

Abbildung 1 – Darstellung dominierender Umwelteinflüsse auf Polymere in natürlichen Habitaten. [2]

Ein zunehmendes gesellschaftliches Bewusstsein für Nachhaltigkeit und Umweltschutz schürt seit Jahren die Debatte rund um die Verwendung von Kunststoffen. Während ihr Einsatz in vielen Anwendungen in der Lebensmittel- und Medizintechnik oder für den Leichtbau schier unverzichtbar ist, spielen Kunststoffe auch bei der Energiewende hin zur nachhaltigen Stromproduktion mittels Windkraft eine unersetzliche Rolle.

Abseits von anspruchsvollen Anwendungen finden Polymere nur noch wenig Akzeptanz. Große Debatten werden über die Sinnhaftigkeit von kurzlebigen Produkten wie Plastikflaschen, Einwegtüten und Verpackungsmaterial geführt. Produkte, die sich in Form von unsachgemäß entsorgtem Müll vor allem in der Umwelt wiederfinden. Neben den unästhetischen Aspekten sorgt die Persistenz von Kunststoffen für weitaus langfristigere Probleme: die unkontrollierte Bildung und Freisetzung von Mikroplastik in die Umwelt. Und der Höhepunkt ist noch längst nicht erreicht. Eine Studie aus dem Jahr 2017 bestimmte eine Menge an 4,9 Billionen Tonnen Plastikmüll, der zwischen 1950 und 2015 in der Umwelt landete. [1] Und der zerfällt eben nur sehr langsam in immer kleinere Partikel. Weiterlesen

Mit Biomasse Seltene Erden recyceln

Prof. Thomas Brück bei der Probenentnahme am Photobiorektor am Werner Siemens Lehrstuhl für Synthetische Biotechnologie. Diese Bioreaktoren nutzten die Forschenden, um Biomasse der untersuchten Cyanobakterien-Stämme zu produzieren.

Prof. Thomas Brück bei der Probenentnahme am Photobiorektor am Werner Siemens Lehrstuhl für Synthetische Biotechnologie. Diese Bioreaktoren nutzten die Forschenden, um Biomasse der untersuchten Cyanobakterien-Stämme zu produzieren. (Bildquelle: Andreas Heddergott / TUM)

Seltene Erden sind essenziell für zahllose Hightech-Anwendungen. Einem Forschungsteam unter Leitung der Technischen Universität München (TUM) ist es jetzt gelungen, diese Metalle mithilfe von bisher nicht untersuchten Bakterienstämmen aus wässriger Lösung zu recyceln.

Windkraftanlagen, Katalysatoren, Glasfaserkabel und Plasma-Bildschirme: Sie alle enthalten Seltene Erden. Da die 17 Metalle, die unter diesem Begriff zusammengefasst werden, für die modernen Technologien unentbehrlich sind, steigen die Nachfrage und die Kosten stetig. Das Vorkommen ergiebiger Abbaustätten ist begrenzt und die Produktion oft aufwändig und umweltschädlich. Die Vorteile, diese Ressourcen so effizient wie möglich zu recyceln, etwa aus Industrieabwässern in den Bereichen Bergbau, Elektronik oder chemische Katalysatoren, liegen also auf der Hand. Weiterlesen

KI beschleunigt Qualitätskontrolle für MEMS-Sensoren

MEMS-Beschleunigungs-Sensor-Kern mit Milbe zum Größenvergleich. Detektionsstrukturen mit Genauigkeitsanforderungen im sub-µm-Bereich. Die gesamte Funktional-Struktur hat Dimensionen von etwa 1mm. Quelle: Bosch

MEMS-Beschleunigungs-Sensor-Kern mit Milbe zum Größenvergleich. Detektionsstrukturen mit Genauigkeitsanforderungen im sub-µm-Bereich. Die gesamte Funktional-Struktur hat Dimensionen von etwa 1mm. Quelle: Bosch

„Mikro-Elektro-Mechanische-Systeme“ (MEMS) begegnen uns in Form von Sensoren überall: Im Auto aktivieren sie den Airbag, im Smartphone erkennen sie Bildschirm-Drehungen. Die Qualitätsprüfung der Sensoren ist allerdings zeitaufwändig. Forschende des KI-Produktionsnetzwerks am Lehrstuhl für Mechatronik arbeiten gemeinsam mit der Robert Bosch GmbH daran, diesen Produktionsschritt mit Hilfe von künstlicher Intelligenz (KI) zu beschleunigen.

Die Herausforderung

Ein Sensor ist nur wenige Millimeter groß, nahezu atomar feine Strukturunterschiede bestimmen seine Genauigkeit. Äußere Faktoren wie zum Beispiel Temperatur wirken sich ebenfalls auf die Sensoren aus. „Der beste Weg, die Messgenauigkeit zu festzustellen, liegt in der Überprüfung der Konstruktionsgrößen aller im Sensor verbauten Komponenten. Wir sprechen von Strukturgrößen von Milliardstel Metern und Massen von Millionstel Gramm“, verdeutlicht Prof. Dr. Lars Mikelsons, Inhaber des Lehrstuhls für Mechatronik, die Herausforderung. Bisher werden diese Größen mit sehr genauen, aber zeitaufwändigen mathematischen Verfahren überprüft. Bei Stückzahlen im Millionenbereich stoßen diese allerdings an ihre Grenzen, künstliche Intelligenz eröffnet hier neue Möglichkeiten. Weiterlesen