Material mit neuartigen Dehnungseigenschaften entwickelt

Metamaterialien sind künstlich entwickelte Materialien, die so in der Natur nicht vorkommen. Ihre Bausteine funktionieren wie Atome in herkömmlichen Materialien, haben aber besondere optische, elektrische oder magnetische Eigenschaften. Entscheidend für die Funktion ist die Wechselwirkung zwischen den Bausteinen: Bislang war diese meist nur mit unmittelbar benachbarten Bausteinen, also lokal möglich. Forschende des Karlsruher Instituts für Technologie (KIT) haben ein mechanisches Metamaterial entwickelt, mit dem sich diese Wechselwirkungen auch über größere Entfernungen im Material auslösen lassen. Das Material könnte Anwendung finden, wenn es um das Messen von Kräften oder das Überwachen von Statik geht.

Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht neue Dehnungseigenschaften. (Abbildung: Jonathan Schneider, KIT)

Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht neue Dehnungseigenschaften. (Abbildung: Jonathan Schneider, KIT)

Weiterlesen

Pilzmyzel als Basis für nachhaltige Materialien

 © Fraunhofer IAP/Jadwiga GaltiesNachhaltig und biologisch abbaubar: Verpackungen aus Pilzmyzel

© Fraunhofer IAP/Jadwiga Galties
Nachhaltig und biologisch abbaubar: Verpackungen aus Pilzmyzel

Pilze haben mehr zu bieten als auf den ersten Blick erkennbar. Ihre fadenförmigen Zellen, die wie ein Wurzelgeflecht unsichtbar und großflächig unter der Erde wachsen, bieten großes Potenzial, um nachhaltige, biologisch abbaubare Materialien herzustellen. Forschende am Fraunhofer-Institut für Angewandte Polymerforschung IAP im Potsdam Science Park nutzen dieses Pilzmyzel, um damit unterschiedlichste, recycelbare Produkte zu entwickeln – vom Portemonnaie über Dämmmaterialien bis hin zu Verpackungen. Weiterlesen

Umformung von Bauteilen aus hochverfestigenden Werkstoffen zur Vermeidung von Wärmebehandlungen – Potentiale und Herausforderungen

Einleitung

Bedingt durch die Bedeutung des Klimaschutzes für unsere Gesellschaft ist ein industrieller Wandel erforderlich. Im Jahr 2014 war etwa ein Drittel der globalen Treibhausgasemissionen dem Industriesektor zuordenbar [1]. Es wird erwartet, dass der Energiebedarf der Industrie in den kommenden Jahren weiter steigt und dass bis zum Jahr 2040 beinahe zwei Fünftel des weltweiten Energieverbrauchs auf den Industriesektor entfallen werden [2]. Dementsprechend spielt die Nachhaltigkeit von Produktionsprozessen eine zunehmend wichtige Rolle. Im Rahmen von Kaltmassivumformprozessen wird oftmals eine zusätzliche Wärmebehandlung der Werkstücke durchgeführt, um die Umformbarkeit zu erhöhen, die defektfreie Umformung überhaupt erst zu ermöglichen oder um für den Bauteileinsatz erforderliche Bauteileigenschaften zu erreichen. Somit stehen den effizienten Produktionsprozessen durch Umformung die teilweise damit verbundenen energieintensiven Prozessschritte der Wärmebehandlung entgegen. Gemäß [3] werden 40 % der im industriellen Umfeld in Deutschland genutzten Energie für Wärmebehandlungsprozesse verbraucht. Daher werden neue Ansätze benötigt, um den Forderungen der Politik und der Gesellschaft im Hinblick auf den Klimaschutz gerecht zu werden. Es werden bereits Lösungen zur Steigerung der Energieeffizienz von Industrieöfen erarbeitet [4]. Bei Kaltmassivumformprozessen besteht aber auch das große Potential, die Wärmebehandlung der Bauteile vollständig zu vermeiden und somit die Ressourceneffizienz der Gesamtprozesse zu steigern. Ein Ansatz, um dies zu erreichen, ist der Einsatz hochverfestigender Werkstoffe. Hierbei muss sichergestellt sein, dass auch ohne Wärmebehandlung eine fehlerfreie Umformung möglich ist. Zusätzlich müssen die geforderten Bauteileigenschaften ausschließlich durch die Umformoperation erzielbar sein. Dieser Ansatz wird im Folgenden am Beispiel der Herstellung von Halbhohlstanznieten für das mechanische Fügen dargelegt.

Abbildung 1: Ansatz für die Steigerung der Ressourceneffizienz bei der Herstellung von Halbhohlstanznieten

Abbildung 1: Ansatz für die Steigerung der Ressourceneffizienz bei der Herstellung von Halbhohlstanznieten

Weiterlesen

Holzwolle statt Erdöl: Wissenschaftler entwickeln nachhaltige Bioverbundstof­fe

Nachhaltige Bioverbundstof­fe

© Sebastian Siwek

Forschende der TUD entwickeln im Projekt „Lignowool_2“ einen Verbundwerkstoff aus Holzwolle und biologisch abbaubaren, textilen Kunststofffasern. Die sogenannten Lignowool-Composites stellen eine nachhaltige Alternative zu erdölbasierten Kunststoffen dar. Sie sollen künftig in der Automobilindustrie zum Beispiel für Türverkleidungen und Kofferraumböden eingesetzt werden. Damit wird die Holzwolle technisch angewendet und die Nutzung natürlicher Materialien gefördert.

Holzwolle findet in alltäglichen Bereichen Verwendung, wie beispielsweise als dämpfendes Füll- und Polstermaterial in Verpackungen, als Zündhilfe, aber auch im Gartenbau und in der Tierhaltung. Sie übernimmt ebenfalls eine tragende Funktion in Leichtbauplatten. Weiterlesen

Intelligente Haut für präzisere Kommunikation und Nahfeld-Abtastung in der Robotik

© Fraunhofer FHR/Alexander BalasBreitbandiges Screening eines Polymers

© Fraunhofer FHR/Alexander Balas Breitbandiges Screening eines Polymers

Spezielle physische Mensch-Roboter-Interaktionen werden vermehrt in der Fertigungsindustrie, im professionellen Dienstleistungssektor und im Gesundheitswesen benötigt. Dies erfordert eine Verbesserung des Komforts und der Kommunikation zwischen Mensch und Maschine. Roboter müssen in der Lage sein, menschliche Handlungen vorherzusehen und Absichten zu erkennen. Dafür braucht es flexible Metamaterialien bzw. flächige Metasurface-Antennen mit hochintegrierter Elektronik, um die nahe Umgebung erfassen zu können. Solche Oberflächen, die einen Roboter wie eine adaptive, intelligente Haut umspannen, entwickelt das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR gemeinsam mit sechs Partnern im EU-Projekt FITNESS. Ausgerüstet mit Metasurface-Antennen sollen Roboter künftig im Nahfeld die Umgebung gezielter abtasten und im Fernfeld besser mit ihrer Basisstation kommunizieren können. Weiterlesen

Neues Material ebnet den Weg für On-Chip Energy Harvesting

Forschenden aus Deutschland, Italien und Großbritannien ist ein wichtiger Schritt bei der Entwicklung eines Materials gelungen, das Energierückgewinnung auf dem Mikrochip in Zukunft möglich machen könnte. Bei ihrer Legierung aus Germanium und Zinn handelt es sich um ein sogenanntes thermoelektrisches Material, das geeignet erscheint, die Abwärme von Computerprozessoren in Elektrizität umzuwandeln. Da alle Elemente aus der 4. Hauptgruppe des Periodensystems stammen, kann die neue Halbleiterlegierung leicht in den Prozess der Chipfertigung integriert werden. Weiterlesen

„Circular Materials Engineering“ – Werkstoffinformationen für eine nachhaltige Industrie 5.0 am Beispiel Aluminium

Metallische Strukturwerkstoffe, wie Stahl und Aluminium, sind wesentlicher Bestandteil der industriellen Wertschöpfung, tragen jedoch auch in hohem Maße zu den globalen industriellen CO2-Emissionen bei. Diese Umweltbelastung erfordert neue transformative Ansätze bei der Herstellung, Verwendung und Wiederverwertung der Metalle. Die Erfassung und Bilanzierung von CO2-Equivalenten, beispielsweise über den PCF (Product Carbon Footprint) sind dabei nur ein erster Schritt. Wichtiger sind technische Verbesserungen für die Kreislaufwirtschaft, in denen Materialien kontinuierlich wiederverwendet, aufgearbeitet und recycelt werden, so dass Abfall und Emissionen drastisch reduziert werden. So ist bekannt, dass durch den Einsatz von Sekundär-Aluminium das CO2-Equivalent um über 90 % vermindert werden kann. Die Verwendung von sogenanntem End- Of-Life (EOL) – Schrott ist insbesondere dann eine Herausforderung, wenn bei hochwertigen Aluminium-Legierungen ein Downcycling vermieden werden soll. Das Thema findet breites Interesse in Industrie und Forschung: Beispiel ist das Forschungsprojekt „Green-Al-Light“, das die gesamte Prozesskette abbildet und praktische Lösungen erarbeitet.

Bild 1: Green-Al-Light erforscht neue Wege für die zirkuläre Prozesskette

Bild 1: Green-Al-Light erforscht neue Wege für die zirkuläre Prozesskette

Weiterlesen

Pyrolyse für hochwertige Recycling-Kunststoffe

 © Fraunhofer IKTSEinordnung des chemischen Recyclings mittels Pyrolyse in ein ganzheitliches Recyclingkonzept. Pyrolyse-Drehrohrofen im Technikumsmaßstab mit eigens entwickelter Kondensationsanlage im Vordergrund

© Fraunhofer IKTS
Einordnung des chemischen Recyclings mittels Pyrolyse in ein ganzheitliches Recyclingkonzept. Pyrolyse-Drehrohrofen im Technikumsmaßstab mit eigens entwickelter Kondensationsanlage im Vordergrund

Kunststoffe aus Polycarbonat sind wegen ihrer Vielseitigkeit und hohen Qualität begehrte Werkstoffe in der Industrie. Aber das Recycling der Kunststoffabfälle stößt derzeit noch an Grenzen, denn mechanische Recyclingverfahren generieren nicht für alle Anwendungen ausreichende Recyclat-Qualitäten. Fraunhofer-Forschende haben gemeinsam mit dem Chemieunternehmen Covestro Deutschland AG eine Methode entwickelt, mit der sich die Ausgangsstoffe der Polycarbonate zurückgewinnen lassen: In der katalytischen Pyrolyse, dem kontrollierten Erhitzen unter Sauerstoffausschluss, zerfallen die Plastikabfälle in ihre Bestandteile. Hersteller nutzen die Rohstoffe für die Herstellung neuer Kunststoffe. Weiterlesen

Heute die Materialien von morgen modellieren

Ausschnitt aus einer Kathodenschicht (rund 100 Mikrometer, links), bestehend aus kugelförmigen Partikeln (Durchmesser rund zehn Mikrometer, Mitte), sowie Simulation (rechts) des Natriumanteils in einem Natrium-Nickel-Manganoxid-Kristall. (Grafik: Simon Daubner, KIT)

Ausschnitt aus einer Kathodenschicht (rund 100 Mikrometer, links), bestehend aus kugelförmigen Partikeln (Durchmesser rund zehn Mikrometer, Mitte), sowie Simulation (rechts) des Natriumanteils in einem Natrium-Nickel-Manganoxid-Kristall. (Grafik: Simon Daubner, KIT)

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei, neue Elektrodenmaterialien zu entdecken und zu untersuchen. Für Natrium-Nickel-Manganoxid als Kathodenmaterial in Natrium-Ionen-Batterien zeigen die Simulationen Änderungen der Kristallstruktur beim Ladevorgang. Sie führen zu einer elastischen Verformung, wodurch die Kapazität schrumpft. Weiterlesen

Molekularer Schwamm für die Elektronik der Zukunft

Einem internationalen Forschungsteam unter Leitung von Dr. Florian Auras von der TU Dresden ist es gelungen, ein neuartiges Material in dem noch recht jungen Forschungsfeld der kovalenten organischen Netzwerkverbindungen zu entwickeln. Das neue zweidimensionale Polymer zeichnet sich dadurch aus, dass sich seine Eigenschaften gezielt und reversibel steuern lassen. Damit sind die Forschenden dem Ziel, schaltbare Quantenzustände zu realisieren, ein Stück nähergekommen.

Molekularer Schwamm für die Elektronik der Zukunft

© Dr. Florian Auras

Weiterlesen