Nylon-Fresser – mikroskopische Helfer beim Recycling von Kunststoffabfällen

Eine gentechnisch veränderte Pseudomonas putida, die Nylon abbauen und in wertvolle Stoffe umwandeln kann. Das Bakterium wurde entwickelt, um das Recycling von Nylon zu verbessern und als Grundlage für biotechnologische Prozesse zu dienen. | Copyrights: Susanne Husted Nielsen

Eine gentechnisch veränderte Pseudomonas putida, die Nylon abbauen und in wertvolle Stoffe umwandeln kann. Das Bakterium wurde entwickelt, um das Recycling von Nylon zu verbessern und als Grundlage für biotechnologische Prozesse zu dienen. | Copyrights: Susanne Husted Nielsen

Ein Team von Wissenschaftler:innen des Instituts für Bio- und Geowissenschaften – Biotechnologie am Forschungszentrum Jülich hat zusammen mit der Firma Novonesis ein Bakterium entwickelt, das die Einzelbausteine verschiedener Nylonvarianten „frisst“ und in wertvolle Stoffe umwandeln kann. Die Ergebnisse dieser Forschung leisten einen wichtigen Beitrag zur Verbesserung von Nylonrecycling.

Synthetische Polyamide, besser bekannt als Nylon, werden aufgrund ihrer Langlebigkeit und hohen Zugfestigkeit in diversen Industriezweigen und Produkten eingesetzt – vom wohl bekanntesten Beispiel Strumpfhosen über Unterwäsche und Sportkleidung bis hin zu Fallschirmen, Netzen, Angelschnüren und Komponenten in der Automobilindustrie. Trotz der breiten Einsatzmöglichkeiten und Nutzung liegt die Recyclingquote von Polyamiden bislang unter fünf Prozent. Viele Nylonabfälle landen entweder auf Deponien, weil geeignete Recyclingprozesse fehlen, gelangen als Netze oder Seile aus der Fischerei in die Umwelt oder werden verbrannt, was giftige Substanzen freisetzen kann. Weiterlesen

Durchbruch bei leitfähigen Kunststoffen: Neuer Polymerkristall leitet Strom wie ein Metall

Ein internationales Forschungsteam hat unter Mitwirkung von Wissenschaftler:innen der Technischen Universität Dresden (TUD) ein bahnbrechendes zweidimensionales leitendes Polymer entwickelt. Eine spezielle, geordnete Form von Polyanilin (2DPANI) weist eine außergewöhnliche elektrische Leitfähigkeit und ein metallisches Ladungstransportverhalten auf. Die Entdeckung ist ein grundlegender Durchbruch in der Polymerforschung, denn sie eröffnet neue Möglichkeiten für die Entwicklung leistungsfähigerer organischer Elektronik.

Schematische Darstellung des Verfahrens zur Synthese von 2DPANI auf der Wasseroberfläche.© Peng Zhang

Schematische Darstellung des Verfahrens zur Synthese von 2DPANI auf der Wasseroberfläche. © Peng Zhang

Weiterlesen

Keramische Faserverbundwerkstoffe erstmals reparierbar

 Bauteil aus carbonfaserverstärktem Siliziumkarbid zur Befestigung optischer Instrumente, die für Raumfahrtanwendungen genutzt werden. ECM - Engineered Ceramic Materials GmbH

Bauteil aus carbonfaserverstärktem Siliziumkarbid zur Befestigung optischer Instrumente, die für Raumfahrtanwendungen genutzt werden. ECM – Engineered Ceramic Materials GmbH

Forschende am Institut für Materials Resource Management der Universität Augsburg haben eine Methode entwickelt, um Bauteile aus keramischen Faserverbundwerkstoffen zu reparieren. Nach einer zerstörungsfreien 3D-Analyse werden Schädigungsbereiche gezielt abgetragen und anschließend über neuartige Reparaturprozesse mit geeignetem Material verfüllt. Bislang war eine Reparatur solcher Faserverbundwerkstoffe nicht möglich. Das Projekt “R4CMC – Repair Concepts for Reduced Reject Rates of virgin and overhauled CMC” wurde vom Bayerischen Staatsministerium für Wirtschaft, Landesentwicklung und Energie gefördert.  

Keramische Faserverbundwerkstoffe (Ceramic Matrix Composites – CMC) zeichnen sich durch ihre Hochtemperatur- und Korrosionsbeständigkeit, ihr schadenstolerantes Verhalten und ihre geringe Dichte aus. Sie eignen sich damit für Anwendungen in extremen Umgebungen und werden vor allem in der Luft- und Raumfahrt eingesetzt, z. B. in Satellitenstrukturen. Weitere Anwendungsbereiche finden sich in der Automobilindustrie, z.B. in Brems- oder Kupplungsscheiben, oder im Maschinenbau, z.B. in Schutzhülsen für Pumpenanwendungen.

Am Institut für Materials Resource Management haben Forschende nun erstmals eine Methode entwickelt, wie sich lokale Schäden in CMC-Bauteilen reparieren lassen. Weiterlesen

Nachhaltige Verpackungen aus Moorpflanzen

 © Fraunhofer IVVIm Vergleich zu Holz zeichnet sich Rohrglanzgras durch seinen niedrigeren Ligningehalt aus.

© Fraunhofer IVV
Im Vergleich zu Holz zeichnet sich Rohrglanzgras durch seinen niedrigeren Ligningehalt aus.

Als Baustoffe, Viehfutter und Nahrungsmittel werden Paludikulturen wie Torfmoos, Schilf und Rohrglanzgras bereits eingesetzt. Aufgrund ihres geringeren Ligningehalts könnten die Moorpflanzen jedoch auch eine attraktive Alternative zu Holz als Rohstoffquelle für nachhaltige Papierverpackungen sein. Dass die Moorpflanzen großes Potenzial für die Herstellung von Faltschachteln, Schalen und Co. aufweisen, haben Forschende des Fraunhofer-Instituts für Verfahrenstechnik und Verpackung IVV in Machbarkeitstests nachgewiesen. Weiterlesen

Quantentechnologie und KI: Schlüssel für sichere Second-Life-Anwendungen von Lithium-Ionen-Batterien

© Friedrich-Alexander-Universität Erlangen-Nürnberg/Prof. Roland NagySpin-basierter Quanten-Magnetfeldsensor in einem Messvorgang. Der Sensor wird optisch angeregt, um die Magnetfeldmessung zu starten. Die Information vom gemessenen Signal wird durch die Emission kodiert, weitergeleitet und in Form von Magnetfeldmappings visualisiert.

© Friedrich-Alexander-Universität Erlangen-Nürnberg/Prof. Roland Nagy
Spin-basierter Quanten-Magnetfeldsensor in einem Messvorgang. Der Sensor wird optisch angeregt, um die Magnetfeldmessung zu starten. Die Information vom gemessenen Signal wird durch die Emission kodiert, weitergeleitet und in Form von Magnetfeldmappings visualisiert.

Um die Nachhaltigkeit der Elektromobilität zu fördern und Ressourcen effizienter zu nutzen, gewinnt das Upcycling von Lithium-Ionen-Batterien zunehmend an Bedeutung. Es werden Konzepte gesucht, um die Materialkreisläufe zu verlangsamen. Erreicht wird dies, indem gebrauchte Batterien aus Elektrofahrzeugen in neuen Anwendungsgebieten zum Einsatz kommen, anstatt sie sofort in Recyclingprozesse zu überführen. Trotz des erheblichen Potenzials zur Ressourcenschonung hat sich das Upcycling aus technischen und wirtschaftlichen Gründen bislang nicht durchgesetzt. Ein Forscherteam kann nun mithilfe einer Hochgeschwindigkeitsmessmethode und KI eine anwendungsreife Lösung ermöglichen. Weiterlesen

Neuartige Materialien weisen Wasser nahezu vollständig ab

Forschende des Karlsruher Instituts für Technologie (KIT) und des Indian Institute of Technology Guwahati (IITG) haben ein Oberflächenmaterial entwickelt, das Wasser fast vollständig abweist. Mit einem völlig neuen Verfahren veränderten sie metallorganische Gerüstverbindungen (MOFs) – künstlich designte Materialien mit neuen Eigenschaften – mithilfe von Kohlenwasserstoffketten. Die so entstandenen superhydrophoben, also hochgradig wasserabweisenden Eigenschaften sind für den Einsatz als selbstreinigende Oberflächen interessant, die robust gegenüber Umwelteinflüssen sein müssen, beispielsweise bei Automobilen oder in der Architektur.

Links: Poröses Substrat mit geringem Wasserkontaktwinkel: Die Oberfläche nimmt viel Flüssigkeit auf. Rechts: Das neue Material weist einen großen Wasserkontaktwinkel auf und ist somit nahezu völlig wasserabweisend. (Foto: KIT)

Links: Poröses Substrat mit geringem Wasserkontaktwinkel: Die Oberfläche nimmt viel Flüssigkeit auf. Rechts: Das neue Material weist einen großen Wasserkontaktwinkel auf und ist somit nahezu völlig wasserabweisend. (Foto: KIT)

Weiterlesen

Mit KI schneller zu besseren Photovoltaik-Materialien

Perowskit-Solarzellen gelten als flexible und nachhaltige Alternative zu herkömmlichen Solarzellen auf Silizium-Basis. Forschende fanden nun innerhalb weniger Wochen neue organische Moleküle, mit denen sich der Wirkungsgrad von Perowskit-Solarzellen steigern lässt. Zu dem internationalen Team gehören auch Wissenschaftlerinnen und Wissenschaftler des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien (HI ERN), einer Außenstelle des Forschungszentrums Jülich. Die Wissenschaftler kombinierten dabei geschickt den Einsatz von KI mit vollautomatischer Hochdurchsatz-Synthese. Die entwickelte Strategie ist auf andere Bereiche der Materialforschung übertragbar, etwa auf die Suche nach neuen Batteriematerialien.

Nah am Optimum: Dank geschicktem Einsatz von KI konnten Forschende neue Materialien für hocheffiziente Solarzellen identifizierenCopyright: Kurt Fuchs / HI ERN

Nah am Optimum: Dank geschicktem Einsatz von KI konnten Forschende neue Materialien für hocheffiziente Solarzellen identifizieren
Copyright: Kurt Fuchs / HI ERN

Weiterlesen

Neue Materialien für eine leistungsfähigere optische Datenübertragung

ERC Synergy Grant für das ATHENS-Projektteam mit Adrian Schwarzenberger, Professor Stefan Bräse, Professor Christian Koos, Hend Kholeif (v. l. n. r., Foto: Amadeus Bramsiepe, KIT)

© Amadeus Bramsiepe, KIT ERC Synergy Grant für das ATHENS-Projektteam mit Adrian Schwarzenberger, Professor Stefan Bräse, Professor Christian Koos, Hend Kholeif (v. l. n. r., Foto: Amadeus Bramsiepe, KIT

Enorm wachsende Datenmengen stellen die Informations- und Kommunikationstechnik vor Probleme. Besonders das digitale Trainieren sogenannter Large-Language-Models für KI-Anwendungen ist eine rechentechnische Mammutaufgabe. Der Flaschenhals dabei ist die Kommunikation zwischen tausenden Prozessoren in riesigen Parallelrechnern. Hierbei spielen optische Transceiver eine zentrale Rolle: Sie wandeln elektrische Informationen in optische Signale um, die dann über eine Glasfaser oder über einen Lichtwellenleiter effizient und schnell übertragen werden können. Bisher werden für die Signalumwandlung in den Transceivern in der Regel Silizium-Bauteile eingesetzt. Dieser Ansatz stößt jedoch zunehmend an Grenzen, da reine Siliziumbauteile zu langsam für die immer größeren Datenmengen sind. Dazu kommt ein hoher Energieverbrauch der vorhandenen Transceiver, der zu einem hohen CO2-Ausstoß der KI-Modelle beiträgt. Weiterlesen

Material mit neuartigen Dehnungseigenschaften entwickelt

Metamaterialien sind künstlich entwickelte Materialien, die so in der Natur nicht vorkommen. Ihre Bausteine funktionieren wie Atome in herkömmlichen Materialien, haben aber besondere optische, elektrische oder magnetische Eigenschaften. Entscheidend für die Funktion ist die Wechselwirkung zwischen den Bausteinen: Bislang war diese meist nur mit unmittelbar benachbarten Bausteinen, also lokal möglich. Forschende des Karlsruher Instituts für Technologie (KIT) haben ein mechanisches Metamaterial entwickelt, mit dem sich diese Wechselwirkungen auch über größere Entfernungen im Material auslösen lassen. Das Material könnte Anwendung finden, wenn es um das Messen von Kräften oder das Überwachen von Statik geht.

Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht neue Dehnungseigenschaften. (Abbildung: Jonathan Schneider, KIT)

Das neue Metamaterial unter dem Rasterelektronenmikroskop: Eine spezielle Struktur (rot) ermöglicht neue Dehnungseigenschaften. (Abbildung: Jonathan Schneider, KIT)

Weiterlesen

Pilzmyzel als Basis für nachhaltige Materialien

 © Fraunhofer IAP/Jadwiga GaltiesNachhaltig und biologisch abbaubar: Verpackungen aus Pilzmyzel

© Fraunhofer IAP/Jadwiga Galties
Nachhaltig und biologisch abbaubar: Verpackungen aus Pilzmyzel

Pilze haben mehr zu bieten als auf den ersten Blick erkennbar. Ihre fadenförmigen Zellen, die wie ein Wurzelgeflecht unsichtbar und großflächig unter der Erde wachsen, bieten großes Potenzial, um nachhaltige, biologisch abbaubare Materialien herzustellen. Forschende am Fraunhofer-Institut für Angewandte Polymerforschung IAP im Potsdam Science Park nutzen dieses Pilzmyzel, um damit unterschiedlichste, recycelbare Produkte zu entwickeln – vom Portemonnaie über Dämmmaterialien bis hin zu Verpackungen. Weiterlesen