Mit Phosphor zu innovativen optoelektroni­schen Bauelementen

© Sebastian Reineke

Phosphorchemiker Prof. Jan. J. Weigand von der Technischen Universität Dresden hat in Zusammenarbeit mit einem interdisziplinären Team eine neuartige Methode entwickelt, um Phosphor- und Stickstoffatome in polyzyklischen Molekülen einzubringen. Diese Methode könnte in Zukunft die Entwicklung neuer Materialien mit spezifischen optoelektronischen Eigenschaften für die Anwendung in organischen Halbleitertechnologien, wie OLEDs oder Sensoren, ermöglichen. Weiterlesen

Isolierende Metalle

Das Forschungsteam nutzt für seine Experimente einen sogenannten optischen Hohlraum – einen engen Raum zwischen zwei Spiegeln, in dem Atome und Moleküle in eine Wechselwirkung mit Licht gezwungen werden. (Bild: Lehrstuhl für Festkörperphysik/FAU)

Das Forschungsteam nutzt für seine Experimente einen sogenannten optischen Hohlraum – einen engen Raum zwischen zwei Spiegeln, in dem Atome und Moleküle in eine Wechselwirkung mit Licht gezwungen werden. (Bild: Lehrstuhl für Festkörperphysik/FAU)

Forschende der FAU nutzen Lichträume, um die elektrische Leitfähigkeit von Materialien zu steuern

Werden Materialien zur Interaktion mit Licht gezwungen, können sich ihre Eigenschaften grundlegend ändern. Forschende der FAU und der Universität Triest haben in einer Studie gezeigt, dass Tantalsulfid, ein metallisches Quantenmaterial, in einem optischen Hohlraum von einem elektrischen Leiter zu einem Isolator werden kann. Da dieser Prozess reversibel ist und kontaktlos gesteuert werden kann, eröffnet er völlig neue Perspektiven für Elektronik, Energiespeicherung und Quantencomputing. Weiterlesen

Keramischer Spritzguss

Die INMATEC Technologies GmbH verschmilzt die einzigartigen Materialeigenschaften keramischer Werkstoffe mit den Vorteilen des Spritzgussverfahrens

(Bildquelle: INMATEC Technologies GmbH)

Die INMATEC Technologies GmbH verschmilzt die einzigartigen Materialeigenschaften keramischer Werkstoffe mit den Vorteilen des Spritzgussverfahrens. Das Unternehmen ist weltweit führend in der Entwicklung und Produktion von keramischen Feedstocks. Diese Granulate ermöglichen die Formgebung von Keramik-Bauteilen mit komplexen Geometrien durch Spritzgießen. INMATEC stimmt die Feedstocks auf die spezifischen Anforderungen der jeweiligen Anwendung ab. Darüber hinaus bietet die Firma Beratungsleistungen entlang der gesamten Wertschöpfungskette an – von der Idee bis zur Serienfertigung. Die Kunden profitieren von gebündelter Keramik-Expertise und jahrzehntelanger Erfahrung mit keramischem Spritzguss (Ceramic Injection Moulding = CIM). Weiterlesen

Mehr Gehirn für Hardware und Software

Rastertunnelmikrosopie-Aufnahme einer Oberfläche mit einzelnen Atomen: Solche Atome nutzen die Forschenden, um neuromorphe Materialien zu entwickeln. (Bildgröße: 5 x 7 Nanometer) Foto: Institut für Funktionelle Materialien und Quantentechnologie


Rastertunnelmikrosopie-Aufnahme einer Oberfläche mit einzelnen Atomen: Solche Atome nutzen die Forschenden, um neuromorphe Materialien zu entwickeln. (Bildgröße: 5 x 7 Nanometer)
Foto: Institut für Funktionelle Materialien und Quantentechnologie

Lernfähige Algorithmen sind intelligent, doch für manche technische Anwendungen, wie etwa autonomes Fahren, noch nicht smart genug. Wissenschaftler:innen erforschen nun neuromorphe Materialien, um Software und Hardware schneller, effizienter und flexibler zu machen.

Entspannt zurücklehnen und die Gegend bewundern, während das Auto autonom durch die Stadt fährt – das gibt es trotz der technischen Möglichkeiten noch nicht. Konventionelle Computer-Hardware und Software verfügen über ungenügend Schnittstellen, um im Notfall mit derselben menschlichen Reaktionsfähigkeit einzugreifen. Weiterlesen

Mit neuem Recyclingprozess thermoplastische Kohlenstofffaser-Tapes kontinuierlich ablösen und wiederverwerten

© Fraunhofer IPTRecyceltes thermoplastisches Carbonfaser verstärktes UD-Tape

© Fraunhofer IPT
Recyceltes thermoplastisches Carbonfaser verstärktes UD-Tape

Der Absatzmarkt für Kunststoffprodukte wächst. Zugleich nimmt die Umweltbelastung durch nicht-abbaubare Kunststoffe zu und erfordert neue Recyclingstrategien. Am Fraunhofer-Institut für Produktionstechnologie IPT in Aachen haben Forschende einen Recyclingprozess entwickelt, um das Faserverbundmaterial gebrauchter Drucktanks in einem Ablöseprozess zurückzugewinnen und für neue Leichtbauprodukte wiederzuverwerten. Ziel ist es, Faserverbundkunststoffe (FVK) zu recyceln, ohne dass es zu deutlichen Einbußen der Produktqualität kommt. Dem Fraunhofer-Team ist dies im Forschungsprojekt »Tankcycling« nun gelungen: Über 90 Prozent der mechanischen Eigenschaften bleiben erhalten. Weiterlesen

Mit Ammoniak zu grünem Stahl

Stahl wird künftig vermutlich noch in größeren Mengen gebraucht als heute, seine Produktion muss jedoch klimaneutral werden - Ammoniak könnte dabei helfen. Das Bild zeigt Rollen von Blechen bei ThyssenKrupp in Duisburg. © picture alliance / Rupert Oberhäuser

Stahl wird künftig vermutlich noch in größeren Mengen gebraucht als heute, seine Produktion muss jedoch klimaneutral werden – Ammoniak könnte dabei helfen. Das Bild zeigt Rollen von Blechen bei ThyssenKrupp in Duisburg.
(© picture alliance / Rupert Oberhäuser)

Wasserstoff ist Hoffnungsträger einer klimaneutralen Wirtschaft – auch für die Stahlindustrie. Doch möglicherweise sollte die Branche zusätzlich auch auf Ammoniak setzen, um grünen Stahl zu erzeugen. Das legt die Studie eines Teams des Max-Planck-Instituts für Eisenforschung in Düsseldorf nahe. Darin zeigen die Forschenden, dass Ammoniak ebenso gut geeignet ist wie Wasserstoff, um Eisenerz in Eisen umzuwandeln. Ammoniak kann mit Wasserstoff produziert werden, der mit regenerativem Strom etwa in sonnenreichen Ländern gewonnen wird. Er lässt sich jedoch viel leichter transportieren.

Die Stahlindustrie ist weltweit der größte einzelne Verursacher von CO2-Emissionen. Sieben Prozent beträgt ihr Anteil am weltweiten Treibhausgasausstoß. Und die Menge an produziertem Stahl dürfte der internationalen Energieagentur zufolge sogar von heute knapp zwei Milliarden Tonnen auf bis drei Milliarden Tonnen im Jahr 2050 steigen. Daher würde der CO2-Fußabdruck der Stahlindustrie noch wachsen, wenn sie nicht von Kohle als Reduktionsmittel wegkommt, mit dem sie Eisenerz in Eisen umwandelt. Weiterlesen

Optimierte Magnete für die Energiewende

Magnete sind Schlüsselmaterialien für die Energiewende. Oft bestehen sie jedoch aus kritischen Rohstoffen. Wissenschaftlerinnen und Wissenschaftler unter der Leitung der TU Darmstadt forschen nun im Rahmen des Projekts „CoCoMag“ an alternativen magnetischen Materialien.

Darstellung einer Einheitszelle, die durch ein komplexes Legierungsdesign zusammen mit den entsprechenden magnetischen Eigenschaften entworfen wurde.

(Bild: Tianyi You) Darstellung einer Einheitszelle, die durch ein komplexes Legierungsdesign zusammen mit den entsprechenden magnetischen Eigenschaften entworfen wurde.

Fossile Brennstoffe werden immer mehr durch Strom aus Sonne, Wind und Wasser ersetzt. Eine ausreichende Menge erneuerbarer Energie ist jedoch nur der Ausgangspunkt für die Klimaneutralität. Ein echter Übergang zu einer nachhaltigen Wirtschaft ist nur mit der Elektrifizierung unserer Infrastruktur möglich, die in hohem Maße von optimierten und kostengünstigen magnetischen Materialien abhängt – etwa bei der Nutzung von Windkraftanlagen, Elektromobilität oder auch bei der magnetischen Kühlung als Alternative zur konventionellen Gaskompressionskühlung. Weiterlesen

Klimafreundliche Kunststoffe für den industriellen 3D-Druck

Mit den Polymer Werkstoffen PA 1101 ClimateNeutral und PA 2200 CarbonReduced von EOS können Unternehmen die Treibhausgasemissionen reduzieren.

Die hervorragenden Eigenschaften der EOS PA 11 und PA 12 Werkstoffe führen zu einer großen Nachfrage dieser für den Plastik 3D-Druck. Eine CO2-reduzierte und sogar klimaneutrale Version davon anbieten zu können, unterstützt Unternehmen dabei, ihre Nachhaltigkeitsziele zu erreichen. Gleichzeitig können sie auf die bewährte Teilequalität und Materialeigenschaften vertrauen.

Mehr erfahren

Grüner Verbundwerkstoff aus Flachs und Chitosan

Grüner Verbundwerkstoff aus Flachs und Chitosan

(Bildquelle: BioMat am ITKE/ Universität Stuttgart, Masih Imani)

Verbundwerkstoffe sorgen etwa in Flugzeugteilen, Freizeitgeräten und Haushaltsgegenständen für Stabilität. Die meisten dieser Werkstoffe haben jedoch einen schlechten CO2-Fußabdruck und sind nicht natürlich abbaubar. Eine nachhaltigere Alternative hat ein Team der Universität Stuttgart unter Leitung von Dr. Linus Stegbauer vom Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP) entwickelt – einen vollständig biobasierten Verbundwerkstoff aus Flachsfasern und dem Biopolymer Chitosan. Weiterlesen

Metamaterialien: Zeitkristall bringt Licht in Schwung

Forschende des KIT entwickeln erstmals zweidimensionalen photonischen Zeitkristall – Anwendung verspricht Fortschritte in der drahtlosen Kommunikation und bei Lasern

Photonische Zeitkristalle, deren Eigenschaften sich periodisch ändern, versprechen wesentliche Fortschritte in Mikrowellentechnik, Optik und Photonik. Forschende am Karlsruher Institut für Technologie (KIT) haben nun zusammen mit Partnern an der Aalto University und der Stanford University erstmals einen zweidimensionalen photonischen Zeitkristall hergestellt und wichtige Anwendungen demonstriert. Ihr Ansatz vereinfacht die Herstellung photonischer Zeitkristalle und kann die Effizienz künftiger Kommunikationssysteme verbessern.

Ein photonischer Zeitkristall in 2D kann Freiraum- und Oberflächenwellen verstärken. (Grafik: Dr. Xuchen Wang, KIT)

Ein photonischer Zeitkristall in 2D kann Freiraum- und Oberflächenwellen verstärken. (Grafik: Dr. Xuchen Wang, KIT)

Weiterlesen