Digitaler Zwilling beschleunigt Solarforschung

Solarflächen der Zukunft: flexibel, durchsichtig und mit immenser Einsatzvielfalt. (Bild: FAU/DALL-E/runwayml)

Solarflächen der Zukunft: flexibel, durchsichtig und mit immenser Einsatzvielfalt. (Bild: FAU/DALL-E/runwayml)

Künstliche Intelligenz soll die Suche nach dem perfekten Material für Solarmodule um den Faktor zehn beschleunigen. Daran arbeitet ein interdisziplinäres Team der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Die Forschenden aus der Materialwissenschaft, dem Ingenieurwesen, der Chemie und der Informatik wollen einen digitalen Zwilling implementieren, der Materialkombinationen besser charakterisiert und Hochdurchsatzexperimente schneller zum Erfolg führt. Weiterlesen

Mit der Natur gegen Materialermüdung

 Korallen sind den Gezeiten und anderen Meeresströmungen ausgesetzt. Die Evolution hat dafür gesorgt, dass sie trotzdem stabil bleiben.

© Hiroko Yoshii
Korallen sind den Gezeiten und anderen Meeresströmungen ausgesetzt. Die Evolution hat dafür gesorgt, dass sie trotzdem stabil bleiben.

Wissenschaftler*innen der Universitäten Erlangen-Nürnberg, Bayreuth und Haifa in Israel, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam, der Charité – Universitätsmedizin Berlin sowie der TU Berlin als Konsortialführerin haben eine neue DFG-Forschungsgruppe gegründet. Ziel ist die Entwicklung neuer Materialien durch Bioinspiration. Sie sollen widerstandsfähiger sein gegen das gefährliche Phänomen der Materialermüdung, die ohne Vorwarnung zum Materialversagen und damit zu schweren Unfällen führen kann. Weiterlesen

Künstliche Intelligenz optimiert Materialgestaltung

Konzeptualisierung eines Laufschuhs aus einem Metamaterial. KI-​generiert mit DALL-​E (Visualisierung: ETH Zürich)

Konzeptualisierung eines Laufschuhs aus einem Metamaterial. KI-​generiert mit DALL-​E (Visualisierung: ETH Zürich)

Forschende haben eine künstliche Intelligenz so trainiert, dass sie die Struktur sogenannter Metamaterialien mit den gewünschten mechanischen Eigenschaften für verschiedene Anwendungsfälle entwerfen kann.

Helme, die die Energie eines Aufpralls absorbieren, Laufschuhe, die jedem Schritt einen zusätzlichen Schub geben, oder Implantate, die die Eigenschaften von Knochen imitieren. Metamaterialien machen solche Anwendungen möglich. Ihre innere Struktur ist das Ergebnis eines sorgfältigen Designprozesses, wonach 3D-​Drucker die generierten Strukturen mit optimierten Eigenschaften herstellen können. Forschende unter der Leitung von Dennis Kochmann, Professor für Mechanik und Materialforschung am Departement für Maschinenbau und Verfahrungstechnik der ETH Zürich, haben neuartige KI-​Tools entwickelt. Diese umgehen den zeitaufwändigen und auf Intuition basierenden Designprozess von Metamaterialien und sagen stattdessen Strukturen mit außergewöhnlichen Eigenschaften schnell und automatisiert vorher. Ein Novum ist, dass diese Tools auch für große (sogenannte nichtlineare) Belastungen anwendbar sind, zum Beispiel wenn ein Helm bei einem Aufprall große Kräfte absorbiert. Weiterlesen

Mit Phosphor zu innovativen optoelektroni­schen Bauelementen

© Sebastian Reineke

Phosphorchemiker Prof. Jan. J. Weigand von der Technischen Universität Dresden hat in Zusammenarbeit mit einem interdisziplinären Team eine neuartige Methode entwickelt, um Phosphor- und Stickstoffatome in polyzyklischen Molekülen einzubringen. Diese Methode könnte in Zukunft die Entwicklung neuer Materialien mit spezifischen optoelektronischen Eigenschaften für die Anwendung in organischen Halbleitertechnologien, wie OLEDs oder Sensoren, ermöglichen. Weiterlesen

Isolierende Metalle

Das Forschungsteam nutzt für seine Experimente einen sogenannten optischen Hohlraum – einen engen Raum zwischen zwei Spiegeln, in dem Atome und Moleküle in eine Wechselwirkung mit Licht gezwungen werden. (Bild: Lehrstuhl für Festkörperphysik/FAU)

Das Forschungsteam nutzt für seine Experimente einen sogenannten optischen Hohlraum – einen engen Raum zwischen zwei Spiegeln, in dem Atome und Moleküle in eine Wechselwirkung mit Licht gezwungen werden. (Bild: Lehrstuhl für Festkörperphysik/FAU)

Forschende der FAU nutzen Lichträume, um die elektrische Leitfähigkeit von Materialien zu steuern

Werden Materialien zur Interaktion mit Licht gezwungen, können sich ihre Eigenschaften grundlegend ändern. Forschende der FAU und der Universität Triest haben in einer Studie gezeigt, dass Tantalsulfid, ein metallisches Quantenmaterial, in einem optischen Hohlraum von einem elektrischen Leiter zu einem Isolator werden kann. Da dieser Prozess reversibel ist und kontaktlos gesteuert werden kann, eröffnet er völlig neue Perspektiven für Elektronik, Energiespeicherung und Quantencomputing. Weiterlesen

Keramischer Spritzguss

Die INMATEC Technologies GmbH verschmilzt die einzigartigen Materialeigenschaften keramischer Werkstoffe mit den Vorteilen des Spritzgussverfahrens

(Bildquelle: INMATEC Technologies GmbH)

Die INMATEC Technologies GmbH verschmilzt die einzigartigen Materialeigenschaften keramischer Werkstoffe mit den Vorteilen des Spritzgussverfahrens. Das Unternehmen ist weltweit führend in der Entwicklung und Produktion von keramischen Feedstocks. Diese Granulate ermöglichen die Formgebung von Keramik-Bauteilen mit komplexen Geometrien durch Spritzgießen. INMATEC stimmt die Feedstocks auf die spezifischen Anforderungen der jeweiligen Anwendung ab. Darüber hinaus bietet die Firma Beratungsleistungen entlang der gesamten Wertschöpfungskette an – von der Idee bis zur Serienfertigung. Die Kunden profitieren von gebündelter Keramik-Expertise und jahrzehntelanger Erfahrung mit keramischem Spritzguss (Ceramic Injection Moulding = CIM). Weiterlesen

Mehr Gehirn für Hardware und Software

Rastertunnelmikrosopie-Aufnahme einer Oberfläche mit einzelnen Atomen: Solche Atome nutzen die Forschenden, um neuromorphe Materialien zu entwickeln. (Bildgröße: 5 x 7 Nanometer) Foto: Institut für Funktionelle Materialien und Quantentechnologie


Rastertunnelmikrosopie-Aufnahme einer Oberfläche mit einzelnen Atomen: Solche Atome nutzen die Forschenden, um neuromorphe Materialien zu entwickeln. (Bildgröße: 5 x 7 Nanometer)
Foto: Institut für Funktionelle Materialien und Quantentechnologie

Lernfähige Algorithmen sind intelligent, doch für manche technische Anwendungen, wie etwa autonomes Fahren, noch nicht smart genug. Wissenschaftler:innen erforschen nun neuromorphe Materialien, um Software und Hardware schneller, effizienter und flexibler zu machen.

Entspannt zurücklehnen und die Gegend bewundern, während das Auto autonom durch die Stadt fährt – das gibt es trotz der technischen Möglichkeiten noch nicht. Konventionelle Computer-Hardware und Software verfügen über ungenügend Schnittstellen, um im Notfall mit derselben menschlichen Reaktionsfähigkeit einzugreifen. Weiterlesen

Mit neuem Recyclingprozess thermoplastische Kohlenstofffaser-Tapes kontinuierlich ablösen und wiederverwerten

© Fraunhofer IPTRecyceltes thermoplastisches Carbonfaser verstärktes UD-Tape

© Fraunhofer IPT
Recyceltes thermoplastisches Carbonfaser verstärktes UD-Tape

Der Absatzmarkt für Kunststoffprodukte wächst. Zugleich nimmt die Umweltbelastung durch nicht-abbaubare Kunststoffe zu und erfordert neue Recyclingstrategien. Am Fraunhofer-Institut für Produktionstechnologie IPT in Aachen haben Forschende einen Recyclingprozess entwickelt, um das Faserverbundmaterial gebrauchter Drucktanks in einem Ablöseprozess zurückzugewinnen und für neue Leichtbauprodukte wiederzuverwerten. Ziel ist es, Faserverbundkunststoffe (FVK) zu recyceln, ohne dass es zu deutlichen Einbußen der Produktqualität kommt. Dem Fraunhofer-Team ist dies im Forschungsprojekt »Tankcycling« nun gelungen: Über 90 Prozent der mechanischen Eigenschaften bleiben erhalten. Weiterlesen

Mit Ammoniak zu grünem Stahl

Stahl wird künftig vermutlich noch in größeren Mengen gebraucht als heute, seine Produktion muss jedoch klimaneutral werden - Ammoniak könnte dabei helfen. Das Bild zeigt Rollen von Blechen bei ThyssenKrupp in Duisburg. © picture alliance / Rupert Oberhäuser

Stahl wird künftig vermutlich noch in größeren Mengen gebraucht als heute, seine Produktion muss jedoch klimaneutral werden – Ammoniak könnte dabei helfen. Das Bild zeigt Rollen von Blechen bei ThyssenKrupp in Duisburg.
(© picture alliance / Rupert Oberhäuser)

Wasserstoff ist Hoffnungsträger einer klimaneutralen Wirtschaft – auch für die Stahlindustrie. Doch möglicherweise sollte die Branche zusätzlich auch auf Ammoniak setzen, um grünen Stahl zu erzeugen. Das legt die Studie eines Teams des Max-Planck-Instituts für Eisenforschung in Düsseldorf nahe. Darin zeigen die Forschenden, dass Ammoniak ebenso gut geeignet ist wie Wasserstoff, um Eisenerz in Eisen umzuwandeln. Ammoniak kann mit Wasserstoff produziert werden, der mit regenerativem Strom etwa in sonnenreichen Ländern gewonnen wird. Er lässt sich jedoch viel leichter transportieren.

Die Stahlindustrie ist weltweit der größte einzelne Verursacher von CO2-Emissionen. Sieben Prozent beträgt ihr Anteil am weltweiten Treibhausgasausstoß. Und die Menge an produziertem Stahl dürfte der internationalen Energieagentur zufolge sogar von heute knapp zwei Milliarden Tonnen auf bis drei Milliarden Tonnen im Jahr 2050 steigen. Daher würde der CO2-Fußabdruck der Stahlindustrie noch wachsen, wenn sie nicht von Kohle als Reduktionsmittel wegkommt, mit dem sie Eisenerz in Eisen umwandelt. Weiterlesen

Optimierte Magnete für die Energiewende

Magnete sind Schlüsselmaterialien für die Energiewende. Oft bestehen sie jedoch aus kritischen Rohstoffen. Wissenschaftlerinnen und Wissenschaftler unter der Leitung der TU Darmstadt forschen nun im Rahmen des Projekts „CoCoMag“ an alternativen magnetischen Materialien.

Darstellung einer Einheitszelle, die durch ein komplexes Legierungsdesign zusammen mit den entsprechenden magnetischen Eigenschaften entworfen wurde.

(Bild: Tianyi You) Darstellung einer Einheitszelle, die durch ein komplexes Legierungsdesign zusammen mit den entsprechenden magnetischen Eigenschaften entworfen wurde.

Fossile Brennstoffe werden immer mehr durch Strom aus Sonne, Wind und Wasser ersetzt. Eine ausreichende Menge erneuerbarer Energie ist jedoch nur der Ausgangspunkt für die Klimaneutralität. Ein echter Übergang zu einer nachhaltigen Wirtschaft ist nur mit der Elektrifizierung unserer Infrastruktur möglich, die in hohem Maße von optimierten und kostengünstigen magnetischen Materialien abhängt – etwa bei der Nutzung von Windkraftanlagen, Elektromobilität oder auch bei der magnetischen Kühlung als Alternative zur konventionellen Gaskompressionskühlung. Weiterlesen