Hochfeste Kupferwerkstoffe für den Einsatz in wasserstoffhaltigen Atmosphären

Wasserstoff – Ein Winzling vor einer großen Karriere?

Wasserstoff wird künftig eine zunehmende Rolle in der Energiepolitik spielen. Um die Klimaziele zu erreichen, werden derzeit an vielen Orten Simulationen und Grundsatzversuche zum Ersatz nicht regenerativer Brennstoffe durchgeführt. Hierzu unterstützt das Bundesministerium für Bildung und Forschung zahlreiche Projekte wie beispielsweise das H2Giga – Leitprojekt [1]. Die Inhalte bilden den kompletten Lebenszyklus von Wasserstoff ab. Angefangen von der Herstellung über den Transport, die Lagerung und Verteilung bis zum Endverbraucher werden die unterschiedlichsten Aspekte beleuchtet und durchgespielt.

Da bei allen Szenarien Werkstoffe eine große Rolle spielen, richten sich derzeit viele Untersuchungen auf die Materialverträglichkeit in flüssigem (kryogenen) und gasförmigem Wasserstoff über einen breiten Temperatur- und Druckbereich.

Häufig werden bekannte Vorfälle aus der Vergangenheit zitiert, wo offenbar Wasserstoff durch Materialversprödung zu einem Versagen mit mehr oder weniger großem Schaden geführt hat, wobei hier unterschiedlichste Industriebereiche betroffen sind. Bild 1 zeigt ein Brückenversagen in Mexiko aus 2003, welches durch das Zusammenspiel von Korrosion und Wasserstoff ausgelöst wurde.

Bild 1: Bauteilversagen infolge von Korrosion in Verbindung mit Wasserstoff [2]

Bild 1: Bauteilversagen infolge von Korrosion in Verbindung mit Wasserstoff [2]

Weiterlesen

2D-Materialien für die Datenverarbeitung der nächsten Generation

„More Moore“ und „More than Moore“: So bezeichnet werden zwei der wichtigsten Forschungsrichtungen der Halbleiterindustrie. More Moore (mehr Moore) ist ein Ausdruck für die Bemühungen, das „Mooresche Gesetz“ zu verlängern, also das kontinuierliche Streben nach einer Verkleinerung der Transistoren und nach der Integration von mehr, kleineren und schnelleren Transistoren auf jedem Chip des nächsten Produktionsknotens. More than Moore (mehr als Moore) deutet stattdessen auf die Kombination von digitalen und nicht-digitalen Funktionen auf demselben Chip hin, ein Trend, der auch als „CMOS+X“ bekannt ist und der mit dem Aufkommen der 5G-Konnektivität und Anwendungen wie dem Internet der Dinge und dem autonomen Fahren immer wichtiger wird.

Für diese beiden Forschungsrichtungen sind 2D-Materialien eine äußerst vielversprechende Plattform. Ihre ultimative Dünnheit macht sie beispielsweise zu erstklassigen Kandidaten, um Silizium als Kanalmaterial für Nanosheet-Transistoren in zukünftigen Technologieknoten zu ersetzen, was eine fortgesetzte Skalierung der Dimensionen ermöglichen würde. Darüber hinaus lassen sich Bauelemente, die auf 2D-Materialien basieren, prinzipiell gut in die Standard-CMOS-Technologie integrieren und können daher verwendet werden, um die Fähigkeiten von Siliziumchips um zusätzliche Funktionen zu erweitern, wie zum Beispiel bei Sensoren, Photonik oder memristiven Bauelementen für neuromorphes Computing. Dazu haben die RWTH-Wissenschaftler Max C. Lemme und Christoph Stampfer mit Deji Akinwande (University of Texas, Austin, USA) und Cedric Huyghebaert (IMEC, Belgien) nun einen Kommentar in Nature Communications veröffentlicht. Weiterlesen

Naturfaser-soft-touch-Oberflächen

Nachhaltige Materialentwicklungen ohne Einbußen beim Design und Komfort sind seit einigen Jahren ein wesentlicher Innovationstreiber bei der Herstellung von Verkleidungsteilen im automobilen Innenraum. Sichtbare Naturfaseroberflächen sind ebenso Stand der Technik wie druckelastische Bauteile. Bislang war es aber noch nicht möglich, beides ansprechend miteinander zu kombinieren. Bauteile mit angenehmen soft-touch Eigenschaften sind derzeit noch aus Mehrstoffsystemen mit weichen Zwischenschichten aufgebaut. Letztere können  häufig nur mit erheblichem Kosten- und Energieaufwand gefertigt werden  und deren Materialien (PVC-Slushhäute, isocyanatbasierte Schäume, Abstandgewirke) lassen sich nur schwer recyceln und sind daher mit den Nachhaltigkeitszielen schwer zu vereinbaren.

Im Rahmen eines Forschungsvorhabens hat das Thüringische Institut für Textil- und Kunststoff-Forschung e.V. Prozesse und Materialien untersucht, um ansprechende, druckelastische bzw. soft-touch Oberflächen auf Basis von Naturfaserverbundwerkstoffen zu entwickeln (Abb. 1).

Abb. 1: Materialaufbau

Abb. 1: Materialaufbau

Weiterlesen

Recycling auf Knopfdruck

Mechanische Charakterisierung hybrider Materialien: Ermittlung der Grenzflächeneigenschaften. Amen Ali

Mechanische Charakterisierung hybrider Materialien: Ermittlung der Grenzflächeneigenschaften. (Bildquelle: Amen Ali)

Leichtbaustrukturen müssen hohen Belastungen standhalten. Strukturwerkstoffe wie Aluminium, Stahl oder Verbundwerkstoffe eignen sich hierfür zwar grundsätzlich, jedoch sind hybride Werkstoffe besser an die Belastungen anpassbar. Sie vereinen in sich verschiedene Werkstoffe im Verbund und sind so gestaltet, dass sie sich gegenseitig perfekt unterstützen und ergänzen. Hierzu zählen Laminate aus Metall und Faserverbundwerkstoffen. Das Problem: Ihr Recycling ist extrem schwierig und mit bestehenden Ansätzen kaum zu schaffen. Hybride Werkstoffe für Anwendungsfelder, die besondere Materialeigenschaften erfordern, nachhaltig zu gestalten und bestehende Hybride wiederaufzubereiten – dieser Aufgabe stellen sich Forschende der Universität Augsburg im Kontext des KI-Produktionsnetzwerks. Weiterlesen

Neue Weichmacher-Generation aus nachwachsenden Rohstoffen

Verbundprojekt entwickelt Alternative als Teil der Kreislaufwirtschaft

Plastik ist heute weltweit ein selbstverständlicher Bestandteil des Alltags. Zu finden ist es unter anderem in Autoreifen, Lebensmittelverpackungen, Spielzeug und Infusionsschläuchen. Viele Kunststoffe enthalten Weichmacher – Studien zeigen jedoch, dass sie toxisch wirken, auch ist für ihre Herstellung klimaschädliches Erdöl nötig. In einem Verbund-Forschungsprojekt der Technischen Universität Hamburg, dem Chemieunternehmen BASF SE und der Universität Bielefeld ist es nun gelungen, nachwachsende Ausgangsstoffe für eine biobasierte Alternative zu nutzen. Leiter des Bielefelder Teilprojekts ist Professor Dr. Harald Gröger von der Arbeitsgruppe Industrielle Organische Chemie und Biotechnologie. Weiterlesen

Dünnster optischer Diffusor für neue Anwendungen

Die Miniaturisierung von optischen Komponenten ist eine Herausforderung in der Photonik. Forschenden des Karlsruher Instituts für Technologie (KIT) und der Friedrich-Schiller-Universität Jena ist es gelungen, einen Diffusor – eine optische Streuscheibe – auf der Basis von Silizium-Nanopartikeln zu entwickeln. Damit können sie Richtung, Farbe und Polarisation von Licht gezielt steuern. Anwendungen kann die neuartige Technologie etwa in transparenten Bildschirmen oder in der Augmented Reality finden.

Die Streuzentren – Silizium-Nanopartikel, hier als schwarze Scheiben dargestellt – auf dem transparenten Substrat streuen (einstellbar) bestimmte Farben von Licht; andere Wellenlängen werden nicht beeinflusst. (Grafik: Dennis Arslan, Universität Jena)

Die Streuzentren – Silizium-Nanopartikel, hier als schwarze Scheiben dargestellt – auf dem transparenten Substrat streuen (einstellbar) bestimmte Farben von Licht; andere Wellenlängen werden nicht beeinflusst. (Grafik: Dennis Arslan, Universität Jena)

Weiterlesen

Flammgeschützte Compounds für das Thermomanagement

Wärmeleitfähige Kunststoffe können insbesondere im Hinblick auf steigende Werkstoffanforderungen im Bereich Automobil-, E&E, Haushaltsgeräte- und Medizinindustrie eine wirtschaftliche Alternative bieten. Dabei sind häufig erhöhte Leistungsdichten und Datenübertragungen in Elektronikkomponenten auf engstem Raum Treiber für ein gutes Thermomanagement. Thermoplastische Kunststoffe ermöglichen die Ableitung von Wärmeströmen durch gezielte Additivierung in Form von wärmeleitfähigen Füllstoffen. Der Vorteil der wärmeleitfähigen Kunststoffe gegenüber metallischen Werkstoffen liegt insbesondere in der Wärmeleitfähigkeit bei dennoch erhaltener elektrischer Isolation. Zudem unterliegen thermoplastische Kunststoffe in diesem Kontext heute strengen Flammschutzklassifizierungen, da Elektroniken durch leistungsfähigere Prozessoren bei gleichzeitiger Miniaturisierung zur Energieverdichtung, lokalen Erhitzungen und erhöhten Brandrisiken führen können. Somit müssen auch leitfähige Kunststoffe höchste Brandschutzanforderungen bei gleichzeitiger Umweltverträglichkeit (halogenfrei) erfüllen. Darüber hinaus muss ein technisches Compound für Gehäusenanwendungen auch die erforderlichen mechanischen Eigenschaften wie die erforderliche Zähigkeit und Dehnung ermöglichen. Die Compoundierung, spritzgießtechnische Verarbeitung und Prüfung derartiger Materialien unter Berücksichtigung der genannten Attribute war unter anderem Aufgabe eines Firmenverbundprojekts, das vom Kunststoff-Institut Lüdenscheid im Jahr 2019 ins Leben gerufen wurde. An diesem Verbundprojekt waren 11 Firmen entlang der gesamten Wertschöpfungskette beteiligt. Weiterlesen

Kostengünstige keramische Faserverbundwerkstoffe (Low-Cost-CMC) für mittlere Anwendungstemperaturen

Eine Möglichkeit zur Kostenreduzierung von keramischen Faserverbundwerkstoffen (CMC) bietet die Verwendung kostengünstiger Basalt- oder Glasfasern anstelle von Keramikfasern – in Kombination mit bei niedrigen Prozesstemperaturen ausgehärteten oder gesinterten Matrices. Anders als herkömmliche CMC, die üb­licherweise bei Temperaturen über  1000 °C eingesetzt werden können, sind diese Low-Cost-CMC für den Einsatz  bei mittleren Temperaturen zwischen 300 °C und 800 °C ausgelegt. Der vorliegende Artikel gibt einen Überblick über das Thema und beleuchtet einige damit verbundene Aktivitäten des Fraunhofer-Zentrums für Hochtemperatur-Leichtbau HTL.

Einleitung

CMC besitzen eine hohe mechanische Festigkeit, Bruchzähigkeit, chemische Beständigkeit und eine geringe Dichte, sodass sie sich ideal als Leichtbauwerkstoff in rauer Umgebung eignen. Im Vergleich zu monolithischen Keramiken liegt der Hauptvorteil von CMC in der hohen Dehnung bei mechanischer Beanspruchung, was zu einem schadenstoleranten Verhalten führt. CMC werden durch Einbettung von keramischen Verstärkungsfasern in eine keramische Matrix hergestellt. Üblicherweise werden entweder nicht-oxidische Keramikfasern aus SiC oder Kohlenstofffasern in Kombination mit einer nicht-oxidischen Matrix verwendet, oder oxidische Keramikfasern werden in eine oxidkeramische Matrix eingebettet. Die entsprechenden CMC werden als nicht-oxidisch bzw. oxidisch bezeichnet. Weiterlesen

Ein innovativer und leistungsstarker Verbundwerkstoff:

Dr. Sebastian Kirmse, Dr.-Ing. in Systems Engineering, Senior Consultant im Bereich R&D Transformation bei MHP (Quelle: MHP)

Dr. Sebastian Kirmse, Dr.-Ing. in Systems Engineering, Senior Consultant im Bereich R&D Transformation
bei MHP (Quelle: MHP)

Z-Threaded Carbon Fiber Reinforced Polymer (ZT-CFRP)

Leichtere, leistungsfähigere und multifunktionale Werkstoffe sind mittlerweile in allen Branchen gefragt. Der innovative Verbundwerkstoff ZT-CFRP, der von einer Forschungsgruppe der University of South Alabama entwickelt wurde, kann die Nachteile herkömmlicher kohlenstofffaserverstärkte Polymere (CFRP) überwinden und neue Möglichkeiten in der Produktion bieten. Mithilfe von MHP soll ZT-CFRP nun marktfähig gemacht werden.

Es ist nichts Neues, dass Automobil- und Flugzeughersteller schon seit vielen Jahren den Leichtbau forcieren, um kraftstoffsparende Vehikel auf den Markt zu bringen. Dabei sollen Materialien zum Einsatz kommen, die nicht nur leicht, sondern zugleich robust sind und den Insassen damit Sicherheit bieten. Wenn sich die Materialien dann noch sehr effizient herstellen lassen ist das der Idealfall. Weiterlesen

Material für künftige Quantencomputer

Messung mit dem 4-Spitzen-Rastertunnelmikroskop Copyright: Forschungszentrum Jülich / Vasily Cherepanov

Messung mit dem 4-Spitzen-Rastertunnelmikroskop
Copyright: Forschungszentrum Jülich / Vasily Cherepanov

Physikern des Forschungszentrums Jülich ist ein wichtiger Schritt hin zur Realisierung neuartiger elektronischer Bauelemente geglückt. Sie konnten mithilfe eines speziellen Vierspitzen-Rastertunnelmikroskops erstmals die außergewöhnlichen elektrischen Eigenschaften messen, die in ultra-dünnen topologischen Isolatoren bestehen. Diese resultieren daraus, dass der Elektronen-Spin an die Stromrichtung gekoppelt ist, was eine Voraussetzung für den Einsatz in einem topologischen Quantencomputer ist. Weiterlesen