Verbesserung der Delaminations-, Impakt- sowie Schadenstolenanzeigenschaften von Hochleistungs-Faserverbundwerkstoffen durch eine dreidimensionale Verstärkung mittels z-Pins

Abbildung 1 Z-Pins zur 3D-Verstärkung von Faser-Kunststoff-Verbunden: v.l.n.r. mit kreisförmigem Querschnitt mit einem Durchmesser von 0,28 mm und 0,5 mm sowie mit definierter Oberflächen-Mikrostrukturierung (umlaufende Kerben) und mit rechteckförmiger Querschnittsfläche.

Abbildung 1 Z-Pins zur 3D-Verstärkung von Faser-Kunststoff-Verbunden: v.l.n.r. mit kreisförmigem Querschnitt mit einem Durchmesser von 0,28 mm und 0,5 mm sowie mit definierter Oberflächen-Mikrostrukturierung (umlaufende Kerben) und mit rechteckförmiger Querschnittsfläche.

Einleitung

Hochleistungs-Faserverbundwerkstoffe, wie sie heute verbreitet in Strukturkomponenten in der Luft- und Raumfahrt sowie zunehmend auch in Bereichen der Elektromobilität zum Einsatz kommen, bestehen typischerweise aus einer polymeren Matrix in Kombination mit verstärkenden Fasern. Speziell die kohlenstofffaserverstärkten Kunststoffe (CFK) mit Epoxidharzmatrix werden dort eingesetzt, wo ein hoher Leichtbaugrad zwingend erforderlich ist, um energie- und kosteneffiziente Systeme zu erreichen. Diese Werkstoffe besitzen, abhängig u.a. von der Kombination von Matrix und Faserverstärkung sowie der Anordnung und Ausrichtung der verstärkenden Fasern, hervorragende mechanische Eigenschaften kombiniert mit einem geringen Gewicht. Diese Eigenschaften zeigen sich in der Laminatebene, in der die lasttragenden Fasermaterialien ausgerichtet sind. Weiterlesen

Wasserstoffantriebe für E-Scooter und Co.

© Fraunhofer IFAM POWERPASTE

© Fraunhofer IFAM
POWERPASTE

Wasserstoff gilt als Antrieb der Zukunft. Während bereits erste Wasserstoff-Autos über deutsche Straßen fahren, ist der bisher übliche Drucktank für E-Scooter jedoch nicht handhabbar. Die POWERPASTE liefert eine Alternative: In ihr lässt sich Wasserstoff auf sichere Weise chemisch speichern, einfach transportieren und ohne teure Tankstellen-Infrastruktur nachtanken. Ein Forscherteam am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden hat die Paste entwickelt, die auf Magnesiumhydrid basiert. Weiterlesen

Die „grünen“ Katalysatoren

Bild: Felix Herold Versuchsanlage für katalytische Tests.

Bild: Felix Herold: Versuchsanlage für katalytische Tests.

Arbeitsgruppe entwickelt neue Materialklasse mit Potenzial für Industrieanwendungen

Katalysatoren sind unverzichtbare Helfer in der modernen Industriegesellschaft. Sie ermöglichen es, Rohstoffe selektiv in Wertprodukte umzuwandeln. Bislang kommen häufig Metalle als Katalysatoren zum Einsatz, deren Abbau oft unter umweltschädlichen und ethisch bedenklichen Bedingungen läuft. Eine Alternative können Kohlenstoffkatalysatoren sein. Eine Arbeitsgruppe am Fachbereich Chemie der TU Darmstadt hat nun eine vielversprechende neue Generation von Kohlenstoffkatalysatoren vorgestellt.

Katalysatoren sind Schlüsselmaterialien bei vielen industriellen Prozessen. Sie beschleunigen chemische Reaktionen und dirigieren deren Verlauf. Durch die Wahl eines geeigneten Katalysators können Nebenreaktionen unterdrückt und somit Ressourcen geschont, Abfall vermieden, und Energie eingespart werden. Dabei verbraucht sich der Katalysator selbst während der Reaktion nicht.

Häufig kommen hier Metallkatalysatoren zum Einsatz. Der Nachteil: Die Materialien sind selten, ihr Abbau ruft ethische Konflikte und Umweltschäden hervor, und sie sind zudem oft toxisch für den Menschen. Auch für Strategien zur zukünftigen Einbindung biomassebasierter Rohstoffe in die Wertschöpfungsketten der chemischen Industrie stützen sich die meisten bekannten Katalysatorsysteme auf Übergangsmetalle wie Vanadium, Molybdän, Platin oder Silber.

Neue Generation von Kohlenstoffkatalysatoren

In diesem Kontext konnte jedoch bereits in den 1980er Jahren nachgewiesen werden, dass reiner Kohlenstoff als metallfreier Katalysator für solche Transformationen ebenfalls in Frage kommt und ein hohes Potenzial als nachhaltiges Ersatzmaterial aufweist. In Folge dieser Entdeckung wurden insbesondere Kohlenstoffnanomaterialien – Kohlenstoffe mit Partikelgrößen im Nanometerbereich– extensiv als Katalysatoren für verschiedenste chemische Umwandlungen eingesetzt. Obwohl diese Materialien im Labor vielversprechende Eigenschaften aufwiesen, kam es bis heute nicht zur industriellen Anwendung, da einerseits die Handhabung der feinen Pulver und andererseits die Herstellung in technischem Maßstab Herausforderungen darstellen.

Angesichts des hohen Potenzials von Kohlenstoffkatalysatoren wird im Fachbereich Chemie der TU Darmstadt in der Arbeitsgruppe von Professor Bastian J. M. Etzold bereits seit einigen Jahren an der Herstellung neuer Kohlenstoffklassen gearbeitet. In Zusammenarbeit mit Professor Wei Qi vom Shenyang National Laboratory for Material Science in China, sowie Professor Jan Philipp Hofmann vom Fachgebiet Oberflächenforschung der TU Darmstadt gelang Felix Herold, einem Doktoranden der Arbeitsgruppe Etzold, die Herstellung einer neuen Generation von Kohlenstoffkatalysatoren.

Sie ist den Nano-Kohlenstoffen in vielerlei Hinsicht überlegen. Herold konnte die hervorragenden katalytischen Eigenschaften von Nano-Kohlenstoffen auf Kohlenstoffmaterialien „makroskopischer“ Partikelgröße übertragen. „Dabei ist es auch gelungen, die Herstellung und die technische Handhabbarkeit entscheidend zu vereinfachen“, erklärt er. „Wir haben am Beispiel der Umwandlung von Bio-Ethanol, einem aus Biomasse zugänglichen Rohstoff, zu Acetaldehyd, einem wichtigen Zwischenprodukt der chemischen Industrie, die Leistungsfähigkeit der neuen Katalysatoren demonstriert.“

Neue Materialklasse

Kohlenstoffkatalysatoren seien von großer Bedeutung, sagt Etzold. „Sie öffnen die Tür zu einer neuen Materialklasse, die auch aufgrund der vielfältigen Optimierungsmöglichkeiten der flexiblen Herstellungsmethode ein hohes Potential in einer Vielzahl von Anwendungen aufweist.“

Weitere Informationen: https://www.etzoldlab.de/

 

Hart wie ein Diamant und verformbar wie Metall

TU-Wissenschaftler*innen entwickeln neues Material für die Technik von morgen

Smartphones mit großflächigen Glasgehäusen und Displays überzeugen zwar optisch, sind aber auch sehr anfällig für Risse und Kratzer. Um diese Schäden künftig zu vermeiden, bräuchte es ein Material, das die Härte eines Diamanten und die Verformbarkeit eines Metalls vereint. Ein Material, das dem Fund des heiligen Grals der Strukturmaterialien gleich käme. Professor Gerold Schneider von der Technischen Universität Hamburg und weitere Hamburger Materialforscherinnen und -forscher haben nun gemeinsam mit der University of California, Berkeley ein Hybridmaterial, einen so genannten Superkristall entwickelt, der diesem Ziel näher kommt. Damit könnte die Technik auf Gebieten wie der Elektronik, Photonik oder auch Energiespeicherung künftig kostengünstiger, robuster oder auch funktionaler werden.

Nano-Eindruck mit erzeugten Versetzungen und Verdichtung des Superkristalls. Grafik: TU Hamburg

Nano-Eindruck mit erzeugten Versetzungen und Verdichtung des Superkristalls. Grafik: TU Hamburg

Weiterlesen

Kunststoff aus Abfall

© Fraunhofer IPK/Andy King Compoundierte und granulierte Polyhydroxybuttersäure (PHB).

© Fraunhofer IPK/Andy King
Compoundierte und granulierte Polyhydroxybuttersäure (PHB).

Ein neuartiger Kunststoff kann aus Abfällen produziert und problemlos in weniger als einem Jahr abgebaut werden. Polyhydroxybuttersäure heißt der Werkstoff, mit dem sich künftig vor allem Einwegprodukte und Wegwerfartikel umweltschonend herstellen und abbauen lassen. Ein neues Produktionsverfahren des Fraunhofer-Instituts für Produktionsanlagen und Konstruktionstechnik IPK und seiner Partner ermöglicht die industrietaugliche Herstellung des innovativen Materials. Weiterlesen

Effiziente Gastrennung dank poröser Flüssigkeiten

Poröse Flüssigkeiten als Membran: Mit diesem Verfahren könnten sich in der Kunststoffindustrie enorme Mengen Energie und damit CO2 einsparen lassen

Poröse Flüssigkeiten als Membran: Mit diesem Verfahren könnten sich in der Kunststoffindustrie enorme Mengen Energie und damit CO2 einsparen lassen. (Foto: Alexander Knebel, KIT)

Neues Material eröffnet die Möglichkeit, beim Abtrennen von Rohstoffen für die Kunststoffindustrie bis zu 80 Prozent Energie einzusparen

Ein Forscher des Karlsruher Instituts für Technologie (KIT) hat gemeinsam mit Partnern „poröse Flüssigkeiten“ entwickelt: In einem Lösemittel schweben – fein verteilt – Nanoteilchen, die Gasmoleküle verschiedener Größen voneinander trennen. Denn die Teilchen besitzen leere Poren, durch deren Öffnungen nur Moleküle einer bestimmten Größe eindringen können. Die porösen Flüssigkeiten lassen sich direkt einsetzen oder zu Membranen verarbeiten, die Propen als Ausgangsstoff für den weit verbreiteten Kunststoff Polypropylen effizient aus Gasgemischen trennen. Die bislang übliche energieaufwendige Destillation könnte somit ersetzt werden. Weiterlesen

Können Hybridtextilien Organobleche ersetzen?

Tankdeckel-Demonstrator

Bild 1: Tankdeckel-Demonstrator

Leichtbau zeichnet sich durch eine Vielzahl an Materialien und Herstellungstechniken aus. Im Bereich Faserverbundwerkstoffe geht der Trend derzeit verstärkt zu thermoplastischen Faserverbundwerkstoffen und hier vor allem in Richtung Organobleche. Durch die erhöhte Zähigkeit des Organoblechs kann jedoch, insbesondere bei komplexen Strukturen und Geometrien, die spätere Umformung im Werkzeug erschwert werden. Weiterlesen

Von der Natur abgeguckt: Einzellige Algen verwandeln sich in neuartige Nanomaterialien

Mineralisierte Calcit-Schalen einzelliger Algen (Skalierung: 5 μm); Detailansicht: nano-poröse Struktur der Algenzellwand (1 μm)

Mineralisierte Calcit-Schalen einzelliger Algen (Skalierung: 5 μm); Detailansicht: nano-poröse Struktur der Algenzellwand (1 μm)
© Anne Jantschke

DinoLight-Projekt soll Grundlagen für die Massenproduktion nanostrukturierter Perowskite legen

In den letzten Jahren sind Metallhalogenid-Perowskite als vielversprechende Materialien für eine neue Generation technologischer Anwendungen entdeckt worden. Das Potenzial wurde bereits in verschiedenen Bereichen der Optoelektronik, wie zum Beispiel der Photovoltaik, der Lasertechnik und der Photo-Elektrolyse sowie für Energiespeicherung und Katalyse eingesetzt. Diese Anwendungen erfordern eine präzise Kontrolle der Größe, Form, Zusammensetzung und kristallographischen Eigenschaften des Materials. Weiterlesen

Herstellung von Graphen basierten Polyamid 6-Kompositen mittels reaktiver Extrusion

Graphen überzeugt durch außergewöhnliche mechanische, thermische und elektrische Eigenschaften und kann als funktioneller Füllstoff in Kunststoffen eingesetzt werden. Allerdings kann derweilen keine ausreichende Dispergierung des Graphens im industriellen Maßstab erreicht werden, wodurch die Nutzung dieser Eigenschaften in technischen Anwendungen behindert wird. Um die Dispergierung des Graphens zu verbessern, kommt im Rahmen der hier vorgestellten Untersuchungen die reaktive Extrusion zum Einsatz. Die Graphenpartikel werden mittels einer hochenergetischen Ultraschallbehandlung zunächst im Monomer dispergiert, wodurch die Zugfestigkeit des Materialverbundes gesteigert wird.

Bild 1: Einfluss des Nanofüllstoffanteils auf den E-Modul und die Zugfestigkeit im Vergleich zum ungefüllten PP [10]

Bild 1: Einfluss des Nanofüllstoffanteils auf den E-Modul und die Zugfestigkeit im Vergleich zum ungefüllten PP [10]

Weiterlesen

Bio-basierte Additive für nachhaltige Kunststoffe

Dr. Diana Freudendahl, Dr. Ramona Langner, Dr. Heike Brandt

Maßgeschneiderte Kunststoffe sind heute extrem vielseitig einsetzbar, ihre Anwendungen reichen von Lebensmittelverpackungen, über dünne feuerfeste Dämmplatten und körperresorbierbare Nahtmaterialien bis hin zu Motorenaufhängungen im Automobil. Um diese Bandbreite an Anwendungen zu erreichen, werden Kunststoffe mit sehr unterschiedlichen, aber auch sehr spezifischen Eigenschaften benötigt. Ermöglicht wird diese Einstellung von Eigenschaften durch das Beimischen von Additiven und Füllstoffen. So werden beispielsweise Farbpigmente zum Einfärben genutzt; zur Erhöhung der Bruchfestigkeit können Glas- oder Carbonfasern sowie Nanomaterialien beigemischt werden, während Öle und Wachse die Fließeigenschaften während der Verarbeitung verbessern. Im Laufe der letzten Jahrzehnte kam es seitens der Verbraucher zu einem deutlich gesteigerten Interesse an Biopolymeren, weshalb zunehmend auch natürliche und biologisch abbaubare Zuschlagstoffe in den Fokus geraten. Auch die Umweltfreundlichkeit der jeweiligen Herstellungsmethoden für Additive, sowie des gesamten Herstellungsprozesses sind zu entscheidenden Aspekten geworden. Weiterlesen