Problematik des Recyclings von CFK aus End-of-Life-Bauteilen

Anwendung von CFK

Abbildung 1: Vergleich verschiedener technischer Fasern hinsichtlich ihrer mechanischen Eigenschaften [eig. Darstellung in Anlehnung an 2]

Abbildung 1: Vergleich verschiedener
technischer Fasern hinsichtlich ihrer
mechanischen Eigenschaften [eig. Darstellung
in Anlehnung an 2]

Die unbestreitbaren Potenziale, die der Einsatz von Kohlenstofffasern (engl. carbon fibres; CF) zur Verstärkung von Kunststoffen (CFK) bietet, beruhen insbesondere auf dem Paradoxon nach Slayter. Dieses besagt, dass ein Verbundwerkstoff Spannungen aufnehmen kann, die bei dessen schwächster Komponente zu einem Werkstoffversagen führen würden. [1] Entsprechend bewirken die ohnehin guten mechanischen Kennwerte der Kohlenstofffasern (vgl. Abb. 1) ein deutlich gesteigertes Eigenschaftsprofil in technischen CFK-Anwendungen. Im Zusammenspiel mit den geringen Dichten von Fasern und Kunststoffmatrix bietet sich CFK als ideales Material für Leichtbauzwecke an. Weiterlesen

Arbeitsschutz immer ein großes und wichtiges Thema!

Arbeits- und Gesundheitsschutz im Betrieb umfasst die drei Bereiche Technik, Organisation und Personal.⁴

Arbeits- und Gesundheitsschutz im Betrieb umfasst die drei Bereiche Technik, Organisation und
Personal.⁴

Ein wesentliches Unternehmensziel ist es, wirtschaftlich zu handeln und zu produzieren. Ein gleichberechtigtes Ziel sollte sein, gute Arbeitsbedingungen zu schaffen. Seit 1996 gilt in Deutschland das Arbeitsschutzgesetz; dieses Gesetz ist für alle Arbeitgeber verbindlich und verpflichtend umzusetzen.

Aber wie verhält es sich mit dem Arbeits- und Gesundheitsschutz im Homeoffice? Wie sieht es mit den allgemeinen Informations- und Dokumentationspflichten aus? Auf diese Fragen und gesetzlichen Forderungen dürfen praktikable Lösungen und Antworten gefunden werden. Arbeitgeber werden auch bei der Gestaltung der Arbeitsplätze im Homeoffice in die Pflicht genommen. Ein Unternehmer kann es nicht dem Arbeitnehmer überlassen, sich selbst um die Einrichtung beziehungsweise Gestaltung des Arbeitsplatzes zu kümmern, sondern hat dafür Sorge zu tragen, dass die Bestimmungen des Arbeits- und Gesundheitsschutzes auch hier eingehalten werden. Weiterlesen

Kompostierbare Displays für nachhaltige Elektronik

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Das bioabbaubare Display kann aufgrund seiner Anpassungsfähigkeit und Adhäsion direkt auf der Hand getragen werden. (Foto: Manuel Pietsch, KIT)

Forschende des KIT entwickeln gedruckte Displays, die biologisch abbaubar sind

In den kommenden Jahren drohen die zunehmende Verwendung elektronischer Geräte in Gebrauchsgegenständen sowie neue Technologien im Zusammenhang mit dem Internet der Dinge, die Produktion von Elektronikschrott zu erhöhen. Eine umweltfreundlichere Produktion und ein nachhaltigerer Lebenszyklus sind hier von entscheidender Bedeutung, um Ressourcen zu sparen und Abfallmengen zu minimieren. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ist es erstmalig gelungen, Displays zu produzieren, deren Bioabbaubarkeit von unabhängiger Seite geprüft und bestätigt wurde. Weiterlesen

Edelmetallfreie Vernetzung von Siliconen

Matthias Nobis im Labor des WACKER-Instituts für Silicium Chemie in Garching Bild: Andreas Heddergott / TUM

Matthias Nobis im Labor des WACKER-Instituts für Silicium Chemie in Garching
Bild: Andreas Heddergott / TUM

Nachhaltiges Verfahren könnte Edelmetalle bei der Vernetzung von Siliconen ersetzen

Silicone haben sich im privaten und im professionellen Bereich bewährt. Damit aus dem flüssigen Vorprodukt das elastische und haltbare Polymer wird, benötigt man jedoch in vielen Fällen teure Edelmetalle als Katalysatoren. Einem Forschungsteam der Technischen Universität München (TUM) und des Münchner WACKER-Konzerns ist es nun gelungen, einen Vernetzungsprozess zu entwickeln, der ohne Edelmetalle auskommt.
Weiterlesen

Fingerkuppen-Sensor mit Feingefühl

Der ultradünne Nanomesh-Sensor trägt sich wie eine zweite Haut auf der Fingerkuppe. Er kann so den ausgeübten Druck messen, ohne dass dabei der Tastsinn beeinträchtigt wird. Bild: Someya-Yokota-Lee Group / The University of Tokyo

Der ultradünne Nanomesh-Sensor trägt sich wie eine zweite Haut auf der Fingerkuppe. Er kann so den ausgeübten Druck messen, ohne dass dabei der Tastsinn beeinträchtigt wird.
Bild: Someya-Yokota-Lee Group / The University of Tokyo

Ultradünner Sensor misst Druck beim Tasten

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) und der Universität Tokyo haben einen ultradünnen Mess-Sensor entwickelt, der wie eine zweite Haut auf der Fingerkuppe getragen werden kann. Dadurch bleibt der Tastsinn am Finger unbeeinträchtigt und das Feingefühl erhalten. Der Sensor kann so wertvolle Daten für die Entwicklung neuer Technologien liefern. Weiterlesen

Plasma macht’s möglich: Oberflächen gezielt modifizieren und ganz neue Materialeigenschaften und -verbunde herstellen

Mit Plasma lassen sich neue Materialverbunde und -eigenschaften erzeugen (Bild: Plasmatreat)

Mit Plasma lassen sich neue Materialverbunde und -eigenschaften erzeugen (Bild: Plasmatreat)

Die Plasmatechnologie dringt zielsicher in nahezu alle Forschungs- und Industriezweige vor – von der Automobilbranche über die Medizin- und Verpackungstechnik bis hin zur Elektronik- und Konsumgüterindustrie. Denn ihre Leistungsfähigkeit in der Oberflächenbehandlung ist wegweisend: Bisher inkompatible Materialien lassen sich nun zusammen verarbeiten und ganz neue Materialverbunde werden möglich.  Plasmatreat ist Experte auf diesem Gebiet. Mit einem breiten Spektrum an Plasmaanlagen und Anlagen-Komponenten, z. B. inlinefähige Lösungen für atmosphärische Plasmaverfahren (Open­air-Plasma), bietet sie Anwendern standardisierte Lösungen für ein vielfältiges Einsatzfeld. Dazu ist sie erster Ansprechpartner für Spezialfälle: Im hauseigenen Technologiecenter entwickeln Plasmaexperten Hand in Hand mit dem Kunden effiziente Lösungen für individuelle Pro­blemstellungen. Weiterlesen

Inspektionsmethoden für die wiederkehrende Prüfung hochelastischer Dickschicht- und Strukturklebungen in Schiffbauanwendungen –Teil 3 (Fehlstellendetektion mit Hilfe von zerstörungsfreien Prüfverfahren)

Einleitung

Nachdem in den Teilen 1 und 2 dieser Artikelserie auf typische Fehlerarten in Klebverbindungen sowie auf deren Schadensbewertung eingegangen wurde, wird in diesem dritten Teil nun aufgezeigt, welche Möglichkeiten bestehen, entsprechende Fehler in Klebverbindungen zerstörungsfrei zu detektieren. Insbesondere im Schiffbau, der durch metallische Bauweisen und schweißtechnische Fügeverfahren geprägt ist, besteht noch immer eine große Skepsis gegenüber geklebten Verbindungen. Um den Befürchtungen eines Totalausfalls einer sicherheitsrelevanten Klebverbindung entgegen zu wirken, besteht die Möglichkeit, diese während des Einsatzes zerstörungsfrei zu prüfen, um ggf. entstandene Schäden oder Fehlstellen frühzeitig zu erkennen und Reparaturmaßnahmen einzuleiten. Dieses Vorgehen wird bei Schienenfahrzeugen und Windkraftanlagen bereits im Rahmen wiederkehrender Prüfungen erfolgreich praktiziert. Weiterlesen

„Artgerechte Haltung“ von Lithium-Ionen-Akkus

Bild 1: Ladegeräte und Akkus verbrannt, schon eine in Brand geratene Zelle entzündet schnell die Umgebung. (Urheber: CEMO)

Bild 1: Ladegeräte und Akkus verbrannt, schon eine in Brand geratene Zelle entzündet schnell die Umgebung. (Urheber: CEMO)

Ob Smartphone, Notebook, Kinderroller, Pedelec oder Rollstühle und Krankenbetten, die Liste mobiler Geräte, die mit Lithium-Akkus betrieben werden, ist lang. Doch lediglich der Transport dieser Akkus ist streng in den Gefahrgutvorschriften gesetzlich geregelt. Darüber hinaus gelten für Umgang bzw. Lagerung die vom Hersteller empfohlenen Hinweise und die richtungsweisenden Publikationen der Versicherungswirtschaft. Doch wie genau muss man diese einhalten bzw. was kann bei Missachtung der Vorgaben passieren? Weiterlesen