2D-Magnete

Dr. Diana Freudendahl, Dr. Heike Brandt, Dr. Ramona Langner

Mindestens schon seit der Seefahrt der Antike hat der Magnetismus den Menschen begleitet und wird heute in Technologien wie Festplattenspeichern und für medizinische Bildgebungsverfahren verwendet. Dieser langen Geschichte steht das sehr junge Forschungsfeld der 2D-Materialien gegenüber, das erst – ausgehend von der Entdeckung des Graphens – seit weniger als 20 Jahren eingehender untersucht wird. Obgleich seitdem sehr viele 2D-Materialien vorhergesagt, gefunden und isoliert wurden, war lange nicht klar, ob es auch magnetische 2D-Materialien geben könnte. Durch Modifikationen nicht-magnetischer 2D-Materialien, z. B. durch Einfügen von Defekten, kann zwar Magnetismus in diesen Materialien generiert und induziert werden, aber gänzlich intrinsische 2D-Magnete waren noch bis vor 5 Jahren unbekannt. Zwar wurde diese Eigenschaft bereits Mitte des letzten Jahrhunderts vorhergesagt, aber es gelang erst 2016 ein erstes permanent magnetisches 2D-Material zu isolieren. Weiterlesen

Einsatz von Zementbeton für den Ständer einer Werkzeugmaschine

Abstract

Strukturkomponenten von Werkzeugmaschinen werden überwiegend aus den Materialien Stahl oder Gusseisen hergestellt. Daneben wird jedoch auch angestrebt Potenzial zur Reduktion von Kosten zu erschließen und das dynamische Maschinenverhalten durch den Einsatz alternativer Materialien zu verbessern. Der Einsatz von zementgebundenem Beton stellt hierbei aufgrund seiner hohen Materialdämpfung und vergleichsweise geringen Materialkosten einen vielversprechenden Ansatz dar. In einem aktuellen Forschungsprojekt am WZL der RWTH Aachen werden daher Rahmenbedingungen für einen zielgerichteten Einsatz von Zementbeton in Werkzeugmaschinen untersucht. In diesem Artikel werden die Ergebnisse der dynamischen Maschinenuntersuchung an einer Fräsmaschine mit einem Fahrständer aus Zementbeton erläutert und mit den Ergebnissen eines Fahrständers aus Gusseisen verglichen. Weiterlesen

Local Hydrogen Analysis – eine mobile Untersuchungsmethode zur Vermeidung wasserstoffinduzierter Schäden

Bild 1: Beispiel von abgeplatzten Oberflächen einer Arbeitswalze (Rössler et al.; Sonderband Prakt. Metallographie 36, 2004, S. 329-335)

Bild 1: Beispiel von abgeplatzten Oberflächen einer Arbeitswalze (Rössler et al.; Sonderband Prakt. Metallographie 36, 2004, S. 329-335)

In der Technik gibt es den Trend zur Verwendung von immer höherfesten Stählen mit Zugfestigkeiten im Bereich oberhalb von 1.000 MPa. Schrauben werden schon bis zu einer Festigkeit von 1.800 MPa eingesetzt. In der Diskussion steht aktuell, Spannstähle mit Festigkeiten über 2.300 MPa zu verwenden. Bei diesen hohen Festigkeiten steigt die Gefahr der Wasserstoffversprödung rasant an, die zum plötzlichen, katastrophalen Versagen der Bauteile führen kann.

Es ist notwendig, sowohl bei der Bauteilherstellung als auch im Betrieb die Randbedingungen für einen sicheren Einsatz zu kennen. Hierfür werden vor allem Wasserstoffanalysemethoden wie Hydrogen Collecting Analysis (HCA) und Thermodesorptionsanalyse (TDA) verwendet. Allerdings ist die Probenpräparation zerstörend. Je nach zu analysierenden Bauteilen (Walzen, Schweißnähte etc.) ist der Aufwand hoch und Untersuchungen, die begleitend zur Produktion die Wasserstoffaufnahme erfassen sollen, können nur mit einer Serie von Bauteilen durchgeführt werden. Weiterlesen

Innovative Sensorssysteme zur Öl-Zustandsüberwachung und Fluidcharakterisierung

Abbildung 1: fluidFOX, der kompakte Fluidanalysator von Micro Resonant für den industriellen Einsatz.Das Online Condition Monitoring System fluidFOX von Micro Resonant überwacht zuverlässig zahlreiche physikalische Eigenschaften von Maschinenölen. Als Informationsträger liefern diese Daten über den Zustand von Anlagen und Maschinen. Der fluidFOX leistet somit einen Beitrag zur Reduktion von ungeplanten Stillständen und Wartungskosten im Rahmen einer modernen und effektiven voraus-schauenden Instandhaltung. Weiterlesen

Timken Quick-Flex®- Design

Abbildung 1: Quick-Flex-Kupplung mit  Abdeckung für hohe Drehzahlen

Abbildung 1: Quick-Flex-Kupplung mit Abdeckung für hohe Drehzahlen

Kupplungen mögen unscheinbar sein, sind jedoch unverzichtbar zur Kraftübertragung in Maschinen und Anlagen. Zahnkupplungen – eine Bauform der elastischen Kupplungen – sind in Industrieanwendungen besonders weit verbreitet; sie übertragen hohe Drehmomente und tolerieren moderate Fehlausrichtung. Trotz ihrer breiten Verwendung sind sie nicht für alle Betriebsbedingungen geeignet, z. B. bei extrem hohem Drehmoment, Mangelschmierung oder schlechten Wartungs- und Reparaturbedingungen. Timken Quick-Flex® Elastomerkupplungen sind eine Alternative für schwierige Umgebungen, da sie nicht die Nachteile herkömmlicher Zahnkupplungen haben.

Die Quick-Flex®-Kupplung ist eine zuverlässige, wartungsfreundliche Lösung zur Wellenverbindung.  Bei der Entwicklung des Designs standen die Prinzipien der einfachen Montage und der störungsfreien Wartung im Vordergrund, die mit nur wenigen Komponenten und einer neuartigen Konstruktion realisiert wurden. Weiterlesen

Big Data nutzbar machen – Ein Ansatz zur Transformation von Rohdaten zur Beschreibung von Abkühlvorgängen in der Filamentextrusion

Abbildung 1: Arbeitsschritte zur Durchführung von Big Data-Projekten nach VDI 3714

Abbildung 1: Arbeitsschritte zur Durchführung von Big Data-Projekten nach VDI 3714

Chancen und Herausforderungen von Big Data-Projekten

In der Industrie fallen massenhaft Daten an, welche wegen ihrer oft ungleichmäßigen Struktur, Größe oder Komplexität nicht schnittstellen- und formatübergreifend nutzbar sind. Solche Massendaten (engl. Big Data) können jedoch die Grundlage für eine datenbasierte Entwicklung von Modellen zur Steigerung der Wertschöpfung von technischen oder ökonomischen Prozessen bilden [1]. Für die Entwicklung von Big Data-Projekten ist eine standardisierte Vorgehensweise unerlässlich, um eine technische und wirtschaftliche Umsetzung sicherzustellen. Exemplarisch wird eine Möglichkeit aufgezeigt, wie der Abkühlverlauf von Kunststofffilamenten während der Herstellung im Extrusionsprozess mittels Thermografie erfasst und dabei entstehende Daten verarbeitet werden können. Daraus abgeleitete Modelle stellen eine durchgängige Qualitätskontrolle bereits während der Produktion sicher. Weiterlesen

Nichtbrennbare, faserverstärkte Kompositbauteile auf Basis kalthärtender, anorganischer Matrixsysteme – ausgewählte Ergebnisse aus dem Projekt AnorKomp

Einleitung

Im Zuge der globalen Klimakrise rückt das Thema Leichtbau in allen Bereichen des Transportwesens zunehmend in den Fokus. Dies gilt auch für den Schiffbau, der heutzutage noch überwiegend auf dem Einsatz von Stahl basiert. Im Vergleich zu diesem Material besitzen Faserverbundwerkstoffe (FVW) aufgrund ihrer sehr guten spezifischen mechanischen Eigenschaften ein hohes Leichtbaupotenzial. Aus diesem Grund bietet ihr Einsatz die Möglichkeit zur Einsparung von Kraftstoff und damit zur Verringerung von CO2-Emissionen. FVW zeichnen sich darüber hinaus im Vergleich zu Stahl durch weitere Vorteile wie große Gestaltungsfreiheit, hohen Korrosionswiderstand sowie gute thermische und akustische Dämmung aus. Im Sport- und Freizeitbereich bestehen Boote deshalb zu großen Teilen aus Verbundwerkstoffen. Im kommerziellen Schiffbau ist der Einsatz von FVW allerdings sehr problematisch. Weiterlesen

Wie sich die Verarbeitung auf Bio-PP auswirkt

In der aktuellen Pandemiesituation haben Take-away- und Lieferdienste Hochkonjunktur. 83 % der Bundesbürger holen oder lassen sich ihre Getränke und Speisen liefern. Das besagt eine Anfang dieses Jahres veröffentlichte repräsentative Umfrage vom WWF und dem Deutschen Verpackungsinstitut dvi. [1] Knapp 73 % der Befragten sind grundsätzlich bereit auch andere Verpackung als Getränkeflaschen zurückzubringen oder am Pfandautomaten zu entsorgen. Aber auch in anderen Bereichen wie Hygiene und Körperpflegeverpackungen sind alternative Lösungen gefragt. [1]

Die Änderung des Konsumentenverhalten führt zu wachsenden ökologischen Bewusstsein und die Nachfrage nach nachhaltigen Materialien. Biokunststoffe finden daher in diesem Zusammenhang zunehmend Anwendung. Es darf jedoch nicht außer Acht gelassen werden, dass dieser Begriff eine Gruppe von Kunststoffen mit unterschiedlichen Ausgangsrohstoffen und unterschiedlichem Abbauverhalten beschreibt. Bioabbaubare Kunststoffe können sowohl auf Basis von fossilem als auch auf Basis von nachwachsendem Kohlenstoff hergestellt worden sein. Sie bieten den Vorteil eines alternativen Entsorgungsweges. Biobasierter Kunststoff hingegen ist ein auf nachwachsendem Kohlenstoffen basierter Kunststoff. Durch seine Verwendung anstelle eines konventionellen Kunststoffs kann fossiles CO2 reduziert und die Abhängigkeit von Erdöl verringert werden [2]. Ein Beispiel für biobasierte Kunststoffe sind die so genannten Drop-Ins. Sie besitzen gegenüber dem konventionellen Pendant identische Eigenschaften. [3] Laut dem aktuellen Plastics – the Facts 2020 Bericht von PlasticsEurope war auch im Jahr 2019 Polypropylen (PP) hinsichtlich der Bedarfsmenge in Europa ein dominanter Wertstoff. Daher erscheint es als sehr naheliegend PP durch Bio-PP zu substituieren. Doch obwohl vor allem bei Biokunststoffen viel Wert auf die Betrachtung der ersten Lebensphasen des Materials gelegt wird, soll in dieser Arbeit die Lebensendphase des Materials betrachtet werden. Denn außer der Wahl eines nachhaltigen Werkstoffs sollten zur Befriedung des wachsenden ökologischen Bewusstseins ebenfalls Bestrebungen von einer linearen hin zu einer im Kreis geleiteten Materiallebensführung angegangen werden. Weiterlesen

Hybridbauteil aus Faserverbund- und papierabgeleiteter Keramik für den Einsatz als formstabile Wärmeisolation

Einleitung

Keramische Faser-Verbundwerkstoffe (engl.: Ceramic Matrix Composites – CMC) bilden eine Werkstoffklasse, die die Vorzüge monolithischer Keramiken (z.B. Hochtemperaturstabilität, Oxidationsbeständigkeit, Korrosionsbeständigkeit) mit schadenstolerantem Versagensverhalten kombiniert. Dadurch ist es möglich CMC als Strukturbauteile einzusetzen, die nicht nur auf Druck (monolithische Keramik) sondern auch auf Zug oder Biegung belastet werden können und dabei gleichzeitig eine verbesserte Thermoschockbeständigkeit aufweisen. Allerdings ist die Verwendung keramischer Fasern sehr kostenintensiv, weshalb es die Vorzüge eines solchen Bauteils gegenüber der Fertigung aus monolithischen Keramiken oder Metallen für die meisten Anwender aus wirtschaftlicher Sicht nicht rechtfertigt. Im Rahmen des AiF-Projekts „ForWerk“ (Formstabile Werkzeugisolation im Kraftfluss mit verbesserten thermischen Kennwerten aufgrund eines hybriden Aufbaus; Vorhaben-Nr. 20646 N) soll nun die Entwicklung eines Hybridbauteils aus CMC und einer neuartigen, porösen Keramik erfolgen, um die Bauteilkosten zu senken und gleichzeitig die Vorteile der verwendeten Materialien für die Anwendung auszunutzen. Für die Herstellung der neuartigen Teilkomponente wird ein mit Keramikpartikeln hochgefülltes Papier verwendet, welches über konventionelle Papiermaschinen gefertigt und zu einer sogenannten papierabgeleiteten Keramik versintert werden kann (vgl. Einschub „Papierabgeleitete Keramik“). Weiterlesen

Untersuchungen zum Übergangsverhalten von Gusseisen mit Kugelgraphit in Abhängigkeit der Dehnrate und des lokalen Spannungszustandes

Abstract

Erhöhte Siliziumgehalte in Gusseisen mit Kugelgraphit führen zu hervorragenden Kombinationen aus statischer Festigkeit und Bruchdehnung. Allerdings ist die Kerbschlagzähigkeit von hochsiliziumhaltigem Gusseisen mit Kugelgraphit als besonders nachteilig zu beurteilen. Die im Kerbschlagbiegeversuch vielfach verwendete Charpy-V-Probe ist durch einen äußerst spezifischen und komplexen Spannungszustand gekennzeichnet. Das Zähigkeitsverhalten dieser Werkstoffe unter bauteilnaher Beanspruchung kann auf diese Weise nicht abgebildet werden. Dies führt in entsprechenden Auslegungs- und Zertifizierungsprozessen, bei denen eine Werkstoffqualifizierung in der Regel durch den Kerbschlagbiegeversuch erfolgt, häufig zu einer Unterschätzung des Werkstoffpotentials. Eine effiziente und zuverlässige Auslegung von Gussbauteilen wird somit erheblich behindert oder gar unterdrückt. In einem aktuellen Forschungsprojekt an der RWTH Aachen wird daher sowohl die Dehnratensensitivität als auch die Abhängigkeit der gemessenen Zähigkeitswerte vom Spannungszustand systematisch untersucht.

Keywords

Gusseisen mit Kugelgraphit, Schädigungsmechanik, Zähigkeit, Dehnratensensitivität, Kerbschlagbiegeversuch, Schlagzugversuch Weiterlesen