Kommunales Abwasser als Ressourcenquelle nutzen

 © Fraunhofer IGBDer Kunststoff Polyhydroxyalkanoat (PHA), produziert aus organischen Säuren

© Fraunhofer IGB
Der Kunststoff Polyhydroxyalkanoat (PHA), produziert aus organischen Säuren

Kläranlagen reinigen nicht nur Abwasser, sie sind auch Rohstofflieferanten. Im Projekt KoalAplan gewinnen Forschende des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB gemeinsam mit Partnern hochwertige Produkte aus kommunalem Abwasser. Dazu gehören Ammonium und Wasserstoff sowie Polyhydroxyalkanoate (PHA), aus denen sich biobasierte und bioabbaubare Kunststoffe herstellen lassen.

In unserem Abwasser stecken nicht nur Schmutz und Ausscheidungen, sondern auch wertvolle Rohstoffe wie Stickstoff und organische Kohlenstoffverbindungen. Mithilfe chemischer, biologischer und physikalischer Verfahren können daraus Wasserstoff, Ammonium und Polyhydroxyalkanoate (PHA) zurückgewonnen werden. Das zurückgewonnene Ammonium lässt sich als Stickstoffdünger für den Landbau verwenden, PHA sind der Rohstoff für Biokunststoffe. Diese Prozesse untersuchen die Forschenden im Projekt KoalAplan (siehe unten). Schauplatz für die interdisziplinäre Forschungsarbeit der Projektpartner ist das Lehr- und Forschungsklärwerk der Universität Stuttgart in Büsnau. Unter realen Bedingungen wird getestet, wie sich die Rückgewinnung von Rohstoffen in Klärwerken realisieren lässt. Hierfür wurde eine Bioraffinerie als Pilotanlage eingerichtet, die 2024 über ein halbes Jahr betrieben wurde. Weiterlesen

Weiche Materialien für intelligentere Roboter

Viskoelastische Polymere verhalten sich sowohl wie ein Festkörper (elastisch) als auch wie eine Flüssigkeit (viskos). Das eröffnet neue Perspektiven für Medizintechnik und Industrie.Bild: Universität Stuttgart / Jan Potent

Viskoelastische Polymere verhalten sich sowohl wie ein Festkörper (elastisch) als auch wie eine Flüssigkeit (viskos). Das eröffnet neue Perspektiven für Medizintechnik und Industrie.
Bild: Universität Stuttgart / Jan Potent

Soft Robots, Robotersysteme aus weichen Materialien, eröffnen neue Perspektiven für Medizintechnik und Industrie. Jun.-Prof. Dr. Aniket Pal von der Universität Stuttgart forscht an viskoelastischen Materialien, mit denen sich intelligente Funktionen in Soft Robots einbetten lassen. Dafür bekommt er im Rahmen des Emmy-Noether-Programms Fördermittel in Höhe von 1,5 Millionen Euro.

„Dank der Förderung können wir unsere Forschung deutlich ausbauen“, sagt Pal. Der 33-Jährige leitet am Institut für Mechanik eine Arbeitsgruppe für Soft Robot Mechanics. „Wir forschen auf einem noch ziemlich jungen Gebiet. Wir entwickeln Mechanismen, die sich abhängig von der Geschwindigkeit einer Krafteinwirkung verformen können. Sie lassen sich für Soft Robots nutzen.“

Viskoelastische Materialien für Soft Robotics

Im Gegensatz zu herkömmlichen Robotern aus Stahl, Aluminium oder Hartplastik setzen Soft Robots auf weiche Materialien. Diese Materialien beruhen auf geeigneten Polymeren. Konkret forscht Aniket Pals Team an viskoelastischen Polymeren. Sie weisen bei Verformung sowohl elastische als auch viskose Eigenschaften auf: Sie verhalten sich sowohl wie ein Festkörper (elastisch) als auch wie eine Flüssigkeit (viskos). Ihr mechanisches Verhalten hängt dabei davon ab, wie lange und wie schnell eine Kraft einwirkt. Die Geschwindigkeit der Krafteinwirkung bestimmt, welches Verhalten dominiert: Bei schneller Belastung zeigen viskoelastische Materialien eher elastisches Verhalten, bei langsamer eher viskoses. Mit dieser Art von Materialien lassen sich weiche Roboter funktioneller und intelligenter machen. Weiterlesen

Mischplastik: Vom Problemmüll zum industriellen Wertstoff

Aus dem schwer recyclebaren „Problemmüll“ Mischkunstoff wollen die Forschenden Wertstoffe für die Chemieindustrie gewinnen.(Bildquelle: Universität Stuttgart)

Aus dem schwer recyclebaren „Problemmüll“ Mischkunstoff wollen die Forschenden Wertstoffe für die Chemieindustrie gewinnen.
(Bildquelle: Universität Stuttgart)

Um aus schwer recyclebaren Mischkunststoffen Wertstoffe für die Chemieindustrie zu gewinnen, gehen Nachwuchswissenschaftler*innen der Universität Stuttgart neue Wege: Sie kombinieren innovative Vergasungsverfahren und mikrobiologische Prozesse.

Styropor, Lebensmittelverpackungen, Schaumstoffe oder Bauelemente: In zahlreichen Produkten findet sich Mischplastik. „Am Ende ihres Lebenswegs werden diese Produkte zu Problemmüll“, sagt Hannah Storm, Doktorandin am Institut für Feuerungs- und Kraftwerkstechnik (IFK) der Universität Stuttgart. Weiterlesen

Hoffnungsträger Ammoniak

 © Fraunhofer IMMPilotanlage des Fraunhofer IMM für das Ammoniakcracken mit einer Kapazität von 20 kg/h Ammoniak

Pilotanlage des Fraunhofer © Fraunhofer IMM
Pilotanlage des Fraunhofer IMM für das Ammoniakcracken mit einer Kapazität von 20 kg/h Ammoniak

Ammoniak kennt man bisher hauptsächlich aus der Düngemittel-Produktion. Künftig könnte das Gas als effizienter Wasserstoffträger und klimafreundlicher Ersatz für fossile Brennstoffe auch eine Schlüsselrolle in der Energiewende einnehmen, denn es lässt sich CO2-frei aus Stickstoff und Wasserstoff herstellen und bietet viele Vorteile für Transport und Lagerung. An einer platzsparenden, effizienten und vor allem dezentralen Ammoniak-Cracking-Technologie arbeitet das Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM gleich in mehreren Forschungsprojekten.

»Ammoniak ist ein großer Potenzialträger für einen nachhaltigen Umbau unseres Energiesystems«, erklärt Dr. Gunther Kolb, Bereichsleiter Energie und stellvertretender Institutsleiter des Fraunhofer IMM in Mainz. »Die Herausforderung der Energiewende besteht ja nicht nur in der ausreichenden emissionsfreien Energieproduktion. Da Grünstrom in großen Mengen besonders an sehr wind- oder sonnenreichen Standorten wie etwa Chile oder Australien erzeugt werden kann, spielt auch der verlustarme Transport an energieärmere Einsatzorte eine relevante Rolle.« Hier kann der Einsatz von Ammoniak umwälzende Vorteile bringen. Weiterlesen

Energieverbrauch mit Phasenwechselmaterialien reduzieren

Herstellung von PCM-Emulsionen im Labor© Fraunhofer ISE Herstellung von PCM-Emulsionen im Labor

Herstellung von PCM-Emulsionen im Labor
© Fraunhofer ISE
Herstellung von PCM-Emulsionen im Labor

Phasenwechselmaterialien, auch Phase Change Materials (PCM) genannt, sind ein wichtiger Baustein im effizienten Thermomanagement. Ihr Einsatz ermöglicht es, Energie einzusparen. Forschende am Fraunhofer-Institut für Solare Energiesysteme ISE entwickeln zusammen mit Industriepartnern Emulsionen aus Phasenwechselmaterialien und Wasser oder Wasser-Glykol-Mischungen etwa für die Gebäudeklimatisierung und die Kühlung von Industriemaschinen. Die neuen PCM-Emulsionen erreichen die doppelte Speicherdichte von Wasser.

Wasser hat sich als Wärmeträger bewährt, wenn es beispielsweise darum geht, Wärme vom Heizkessel zum Heizkörper zu transportieren oder Kühldecken mit Kälte zu versorgen. Doch der Wärmeträger bekommt Konkurrenz: Im Projekt Optimus entwickeln Forschende am Fraunhofer ISE in Freiburg gemeinsam mit Partnern aus der Industrie PCM-Emulsionen mit hoher Speicherdichte für den Einsatz in Gebäuden und der Industrie, aber auch für die Anwendung in Wärmepumpensystemen und zur Batteriekühlung in Kraftfahrzeugen. Weiterlesen

Materialien: Metallorganische Gerüste mit metallischer Leitfähigkeit

Metallische Leitfähigkeit bei MOF-Dünnschichten eröffnen neue Perspektiven in der Elektronik- und Energieforschung. (Foto: Lena Pilz, KIT)

Metallische Leitfähigkeit bei MOF-Dünnschichten eröffnen neue Perspektiven in der Elektronik- und Energieforschung. (Foto: Lena Pilz, KIT)

Metallorganische Gerüstverbindungen (MOFs) zeichnen sich durch hohe Porosität und eine anpassbare Struktur aus. Sie besitzen enormes Potenzial, zum Beispiel für Anwendungen in der Elektronik. Doch bisher schränkte ihre geringe elektrische Leitfähigkeit ihren Einsatz stark ein. Mithilfe von KI- und robotergestützter Synthese in einem selbststeuernden Labor ist es Forschenden des Karlsruher Instituts für Technologie (KIT) gemeinsam mit Kolleginnen und Kollegen in Deutschland und Brasilien nun gelungen, eine MOF-Dünnschicht anzufertigen, die Strom leitet wie Metalle. Damit eröffnen sich in der Elektronik und der Energiespeicherung – von Sensorik über Quantenmaterialien bis hin zu Funktionswerkstoffen – neue Möglichkeiten. Weiterlesen

Metamaterialien: Stark verdrehte Stäbe speichern große Mengen Energie

Das Modell zeigt die spiralförmige Verformung des Metamaterials. Dank dieses Mechanismus lässt sich eine große Menge Energie speichern, ohne dass es zu Brüchen kommt. (Abbildungen: IAM, KIT / Collage: Anja Sefrin, KIT)

Das Modell zeigt die spiralförmige Verformung des Metamaterials. Dank dieses Mechanismus lässt sich eine große Menge Energie speichern, ohne dass es zu Brüchen kommt. (Abbildungen: IAM, KIT / Collage: Anja Sefrin, KIT)

Mechanische Metamaterialien mit hoher elastischer Energiedichte hat ein am Karlsruher Institut für Technologie (KIT) koordiniertes internationales Team von Forschenden entwickelt. Dank stark verdrehter Stäbe, die sich spiralförmig verformen, weisen sie eine hohe Steifigkeit auf und können große Mengen elastischer Energie aufnehmen und wieder abgeben.

Ob Federn zur Energieaufnahme, Puffer für die Energiespeicherung, aber auch flexible Strukturen in der Robotik oder in energieeffizienten Maschinen: Viele Technologien erfordern eine mechanische Energiespeicherung. Dabei wird kinetische Energie, also Bewegungsenergie, oder entsprechende mechanische Arbeit so in elastische Energie umgewandelt, dass sie bei Bedarf wieder vollständig freigesetzt werden kann. Zentrale Kenngröße dafür ist die Enthalpie – die Energiedichte, die sich in einem Materialelement speichern und zurückgewinnen lässt. Peter Gumbsch, Professor für Werkstoffmechanik am Institut für Angewandte Materialien (IAM) des KIT, erklärt die Herausforderung, eine möglichst hohe Enthalpie zu erreichen: „Die Schwierigkeit besteht darin, widersprüchliche Eigenschaften zu kombinieren: hohe Steifigkeit und große rückstellbare Verformung bei limitierter Festigkeit.“ Weiterlesen

Smarte Textilien und Oberflächen – Wie eine leichte Folie noch mehr Leben in die Technik bringt

© Oliver DietzeForscher Sebastian Gratz-Kelly zeigt ein Sensorelement mit metallbeschichteter Folie: Das Touchpad – hier auf einem Armband – erkennt Druck und Bewegungsrichtung des Fingers, der darüberstreicht. Mit maschinellem Lernen und KI kann es Buchstaben und Formen entziffern.

© Oliver Dietze: Forscher Sebastian Gratz-Kelly zeigt ein Sensorelement mit metallbeschichteter Folie: Das Touchpad – hier auf einem Armband – erkennt Druck und Bewegungsrichtung des Fingers, der darüberstreicht. Mit maschinellem Lernen und KI kann es Buchstaben und Formen entziffern.

Kleider übertragen virtuelle Berührungen auf die Haut, Displays bestätigen Eingaben mit Nachdruck, sogar Lautsprecher werden ultraleicht: Die dünne Silikonfolie, die all dies möglich macht, bewegt sich nach Wunsch, sie vibriert, klopft, drückt oder zieht. Alles nur mit elektrischer Spannung.

Die Folie ist fast so dünn wie Frischhaltefolie und ein wahrer Tausendsassa. Mit ihr kann das Team der Professoren Stefan Seelecke und Paul Motzki von der Universität des Saarlandes den Dingen auf energiesparende Weise neue Fähigkeiten verleihen. Auf Textilien angebracht, macht sie den eigenen Körper in der virtuellen Realität etwa von Computerspielen spürbar. Indem sich die Folie bewegt und mit wohl dosierter Kraft drückt, überträgt sie Berührungsempfindungen auf die Haut. Als dehnbare Schicht im Arbeitshandschuh gibt sie weiter, wie Hand und Finger sich bewegen und lässt den Computer Gesten verstehen. Auf flache Displays zaubert die Folie Knöpfe, Schalter oder Schieberegler, die auftauchen und wieder verschwinden. Sogar stromsparende leichte Lautsprecher, Signalgeber oder schallschluckende Textilien zählen zu den Prototypen, die die Experten für smarte Materialsysteme an der Universität und am Saarbrücker Zentrum für Mechatronik und Automatisierungstechnik (Zema) entwickeln. Weiterlesen

Neuartige Materialien weisen Wasser nahezu vollständig ab

Forschende des Karlsruher Instituts für Technologie (KIT) und des Indian Institute of Technology Guwahati (IITG) haben ein Oberflächenmaterial entwickelt, das Wasser fast vollständig abweist. Mit einem völlig neuen Verfahren veränderten sie metallorganische Gerüstverbindungen (MOFs) – künstlich designte Materialien mit neuen Eigenschaften – mithilfe von Kohlenwasserstoffketten. Die so entstandenen superhydrophoben, also hochgradig wasserabweisenden Eigenschaften sind für den Einsatz als selbstreinigende Oberflächen interessant, die robust gegenüber Umwelteinflüssen sein müssen, beispielsweise bei Automobilen oder in der Architektur.

Links: Poröses Substrat mit geringem Wasserkontaktwinkel: Die Oberfläche nimmt viel Flüssigkeit auf. Rechts: Das neue Material weist einen großen Wasserkontaktwinkel auf und ist somit nahezu völlig wasserabweisend. (Foto: KIT)

Links: Poröses Substrat mit geringem Wasserkontaktwinkel: Die Oberfläche nimmt viel Flüssigkeit auf. Rechts: Das neue Material weist einen großen Wasserkontaktwinkel auf und ist somit nahezu völlig wasserabweisend. (Foto: KIT)

Weiterlesen

Mit KI schneller zu besseren Photovoltaik-Materialien

Perowskit-Solarzellen gelten als flexible und nachhaltige Alternative zu herkömmlichen Solarzellen auf Silizium-Basis. Forschende fanden nun innerhalb weniger Wochen neue organische Moleküle, mit denen sich der Wirkungsgrad von Perowskit-Solarzellen steigern lässt. Zu dem internationalen Team gehören auch Wissenschaftlerinnen und Wissenschaftler des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien (HI ERN), einer Außenstelle des Forschungszentrums Jülich. Die Wissenschaftler kombinierten dabei geschickt den Einsatz von KI mit vollautomatischer Hochdurchsatz-Synthese. Die entwickelte Strategie ist auf andere Bereiche der Materialforschung übertragbar, etwa auf die Suche nach neuen Batteriematerialien.

Nah am Optimum: Dank geschicktem Einsatz von KI konnten Forschende neue Materialien für hocheffiziente Solarzellen identifizierenCopyright: Kurt Fuchs / HI ERN

Nah am Optimum: Dank geschicktem Einsatz von KI konnten Forschende neue Materialien für hocheffiziente Solarzellen identifizieren
Copyright: Kurt Fuchs / HI ERN

Weiterlesen