Balsaholz intelligent zurückgewinnen und wiederverwerten

Rund 20 Prozent des Stroms wurden in Deutschland 2018 von Windenergieanlagen erzeugt.

© Hans-Peter Merten / MATOfoto
Rund 20 Prozent des Stroms wurden in Deutschland 2018 von Windenergieanlagen erzeugt.

30 000 Windenergieräder drehen sich in Deutschland. Viele von ihnen kommen langsam in die Jahre. 2019 mussten 2000 Rotorblätter entsorgt werden, 2024 werden es schon 15 000 sein. Doch wohin mit den bis zu 90 Meter langen und rund 15 Tonnen schweren Ungetümen? Eine Lösung haben Forscherinnen und Forscher vom Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut WKI parat: Mithilfe einer neuen Recyclingtechnik ist es ihnen gelungen, das in den Rotorblättern enthaltene Balsaholz zurückzugewinnen und etwa zu Dämmstoffmatten für Gebäude zu verarbeiten. Weiterlesen

Eine echte Alternative zum Erdöl

Monomereinheit des Poly-3S-caranamid.

Monomereinheit des Poly-3S-caranamid.
Bild: P. Stockmann / TUM

Synthese biobasierter Hochleistungs-Polyamide aus biogenen Reststoffen

Ein Forschungsteam der Fraunhofer-Gesellschaft und der Technischen Universität München (TUM) unter Leitung des Chemikers Volker Sieber hat eine neue Polyamid-Familie entwickelt, die sich aus einem Nebenprodukt der Zelluloseproduktion herstellen lässt – ein gelungenes Beispiel für nachhaltigere Wirtschaftsweise mit biobasierten Materialien.
Weiterlesen

Vielversprechende Feststoff-Elektrolyte für leistungsstarke Lithium-Ionen Batterien

© Fraunhofer-Institut für Werkstoffmechanik IWM
Hoffnungsträger für noch leistungsfähigere Lithium-Ionen-Batterien: Festkörper-Elektrolyt (hier LiTi2(PO4)3, Li-grün, Ti-blau, P-lila, O-rot) mit Darstellung der »Wanderungspfade« für Lithium-Ionen (gelbe Bänder).

Leistungsfähige, langlebige Energiespeicher sind für viele Zukunftstechnologien von zentraler Bedeutung: Etwa für die Elektromobilität, für mobile Endgeräte wie Tablets oder Smartphones oder zur effizienten Nutzung regenerativer Energien. Dr. Daniel Mutter vom Freiburger Fraunhofer-Institut für Werkstoffmechanik IWM konnte klären, wie Feststoff-Elektrolyte aus Keramik chemisch zusammengesetzt sein müssen, um gute Leistung in Lithium-Ionen Batterien zu erbringen. Solche Feststoff-Elektrolyte sind umweltfreundlicher als herkömmliche Flüssig-Elektrolyte und könnten Lithium-Ionen Batterien deutlich leistungsfähiger und betriebssicherer machen.
Weiterlesen

Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Ein Forscherteam am KIT erklärt bislang unverstandene Degradationsmechanismen im Kathodenmaterial für zukünftige Hochenergie-Lithium-Ionen-Batterien.

Ein Forscherteam am KIT erklärt bislang unverstandene Degradationsmechanismen im Kathodenmaterial für zukünftige Hochenergie-Lithium-Ionen-Batterien. (Foto: Amadeus Bramsiepe, KIT)

Erfolg für Materialforschung am KIT – Wichtige Erkenntnis auf dem Weg zur Hochenergie-Batterie

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Weiterlesen

Hoffnung auf Silicium-Solarzellen mit deutlich höheren Wirkungsgraden

Aus neunatomigen Silicium-Clustern sollten sich auch größere Strukturen aufbauen lassen. Theoretiker hoffen dabei Materialien zu erhalten, die eine direkte Bandlücke aufweisen und damit wesentlich effizientere Solarzellen ermöglichen.

Aus neunatomigen Silicium-Clustern sollten sich auch größere Strukturen aufbauen lassen. Theoretiker hoffen dabei Materialien zu erhalten, die eine direkte Bandlücke aufweisen und damit wesentlich effizientere Solarzellen ermöglichen.
Bild: A. J. Karttunen / Aalto Universität

Theoretische Rechnungen zeigen, dass Silicium-Solarzellen unter bestimmten Bedingungen einen wesentlich höheren Wirkungsgrad haben könnten. Ein Zugang zu entsprechend modifiziertem Silicium könnten kleine Silicium-Cluster sein. Bisher waren diese jedoch nicht in löslicher Form zugänglich, was Voraussetzung für eine vielseitige Verarbeitung ist. Forscher der Technischen Universität München (TUM) haben nun einen einfachen Syntheseweg dafür entdeckt. Weiterlesen

Luftig-leichte Iridium-Elektrode

Hochporöse Mikropartikel für Iridium-Elektrode

Hochporöse Mikropartikel für Iridium-Elektrode
Copyright: C. Hohmann, LMU

Das Edelmetall Iridium ist bestens für die Gewinnung von Wasserstoff per Elektrolyse geeignet – und enorm teuer. Richtig sparen kann man mit einer neuen Elektrode aus hochporösem Material, die bereits mit einem Hauch Iridiumoxid hervorragende Ergebnisse erzielt.

Das Motto einer besonders effektiven Elektrolysemethode zur Wasserstoffgewinnung lautet: Membran statt flüssigen Elektrolyten. Die Wasserstoff-Ionen wandern hierbei über eine Protonen-Austausch-Membran (PEM) von der Sauerstoff bildende Anode zur Wasserstoff bildenden Kathode. Die Membrantechnik hat viele Vorteile. Die Elektrolysezelle wird durch die dünne Membran schlanker und vielseitiger einsetzbar. Das System ist ohne Elektrolytlösung fast wartungsfrei. Es hält hohen Druck aus und reagiert in Sekundenschnelle auf schwankende Stromzufuhr. Weiterlesen

Wissenschaftler entwickeln umweltschonende Energietechnologie mit superkritischem CO2

Eine Turbine, die mit superkritischem CO2 funktioniert, muss bei gleicher Leistung nur etwa ein Fünftel so groß sein wie eine herkömmliche Dampfturbine.

Eine Turbine, die mit superkritischem CO2 funktioniert, muss bei gleicher Leistung nur etwa ein Fünftel so groß sein wie eine herkömmliche Dampfturbine.
© Eckold/TU Dresden

Wissenschaftler der TU Dresden und des Helmholz-Zentrums Dresden-Rossendorf (HZDR) entwickeln in den kommenden drei Jahren gemeinsam mit der Siemens AG und dem Institut für Solarforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) eine neue Energietechnologie, die mithilfe von superkritischem Kohlendioxid (sCO2) nachhaltig Strom produziert. Als Wärmequellen wollen die Wissenschaftler ausschließlich Solar- und Abwärme nutzen. Für das Verbundprojekt „CARBOSOLA“ hat das Bundesministerium für Wirtschaft und Energie nun 2,2 Millionen Euro zur Verfügung gestellt. Das Forschungsvorhaben markiert den Einstieg Deutschlands in die sCO2-Technologie für die Stromerzeugung aus nichtfossilen Wärmequellen. Weiterlesen

Wasserstoff aus Erdgas ohne CO₂-Emissionen

Wasserstoff aus Erdgas ohne CO2-Emissionen: Die Methanpyrolyse mittels Blasensäulenreaktor ermöglicht eine klimafreundliche Nutzung von fossilem Erdgas.

Die Methanpyrolyse mittels Blasensäulenreaktor ermöglicht eine klimafreundliche Nutzung von fossilem Erdgas. (Infografik: Leon Kühner, KIT)

KIT und Wintershall Dea starten gemeinsame Arbeiten zur klimafreundlichen Methanpyrolyse im industriellen Maßstab

Durch Methanpyrolyse lässt sich fossiles Erdgas zukünftig klimafreundlich nutzen: Methan wird dabei in gasförmigen Wasserstoff und festen Kohlenstoff gespalten, der einen wertvollen Grundstoff für verschiedene Industriezweige darstellt und darüber hinaus sicher gelagert werden kann. Dies kann ein wichtiger Baustein für eine künftig klimaneutrale Energieversorgung sein. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben hierfür ein besonders effizientes Verfahren entwickelt. Gemeinsam mit dem Industriepartner Wintershall Dea wird es nun für den Einsatz im industriellen Maßstab weiterentwickelt. Weiterlesen

Plasma im biologischen Katastrophenschutz

as neu entwickelte mobile Plasma-Dekontaminationssystem (MoPlasDekon) ist in der Lage, im Katastropheneinsatz die Innenräume ganzer Krankentransportwagen chemiefrei zu desinfizieren

Bild 1: Das neu entwickelte mobile Plasma-Dekontaminationssystem (MoPlasDekon) ist in der Lage, im Katastropheneinsatz die Innenräume ganzer Krankentransportwagen chemiefrei zu desinfizieren Foto: Plasmatreat

Im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) initiierten Programms „Forschung für die zivile Sicherheit“ kam das dreijährige Förderprojekt MoPlasDekon (Mobile Plasma-Dekontamination) im August d.J. zum Abschluss. Mit einer neu entwickelten, mobilen Plasmatechnik soll es erstmals möglich werden, die erforderliche Entkeimung verseuchter Oberflächen ohne gesundheitsgefährdende und umweltbelastende Chemikalien an gleich welchem Ort in der Welt durchzuführen. Weiterlesen

Polymerwerkstoffe für Batterietechnologien

Dr. Diana Freudendahl, Dr. Heike Brandt, Dr. Ramona Langner

Die zunehmende Elektrifizierung von Lebens- und Arbeitsbereichen erfordert auch eine stetige Weiterentwicklung von Energiespeichern. Eine herausragende Rolle spielen hierbei wiederaufladbare Batterien, da sie die Elektrifizierung vieler Anwendungsbereiche optimieren oder erst ermöglichen, wie z. B. die Verbreitung von tragbarer Unterhaltungselektronik oder die Nutzung elektrisch betriebener Fahrzeuge. Aber auch im Bereich der Energiespeicherung von Strom aus alternativen Energiequellen, wie Photovoltaik und Windkraft, sind sie unverzichtbar. Polymerwerkstoffe sind dabei in Batterien bereits allgegenwärtig und werden als Elektrolyte, Elektrodenbestandteile, Separatoren oder Beschichtungen verwendet. Neben der Optimierung bereits bestehender Batteriesysteme wird jedoch auch an Polymermaterialien mit neuen Funktionalitäten geforscht, um einerseits bereits verwendete Systeme zu verbessern und andererseits neue chemische Zusammensetzungen zu ermöglichen. Idealerweise können solche Polymerwerkstoffe sowohl aus günstigen Ausgangsmaterialien in umweltfreundlichen und ungiftigen Lösungsmitteln hergestellt werden, als auch wichtige Wegbereiter für sehr hohe Energiedichten darstellen. Von aktuellem Interesse sind derzeit insbesondere Entwicklungen im Bereich von Lithium-Ionen (Li-Ionen)- sowie Lithium-Schwefel(LiS)-Batterien, hier können Polymerwerkstoffe entscheidend zur weiteren Entwicklung beitragen. Weiterlesen