In der Stadt Espoo nahe Helsinki, Finnland, hat ein Team von Wissenschaftlern hart daran gearbeitet, nachhaltige und recyclebare Alternativen zu herkömmlichen Kunststoffen zu entwickeln. Eine dieser Wissenschaftlerinnen ist Dr. Ulla Forsström, leitende Wissenschaftlerin am VTT-Forschungszentrum und Koordinatorin des europäischen Forschungprojekts INN-PRESSME. Im Rahmen dieses Projekts werden innovative Kunststoffverpackungen entwickelt, die im Einklang mit der Kreislaufwirtschaft stehen. Weiterlesen
Kategorie: Umwelttechnik
Spannende Beiträge, informative Fachartikel und die neusten Entwicklungen aus dem Themengebiet Umwelttechnik.
Highspeed für die Batteriezellproduktion
Lithium-Ionen-Batteriezellen bestehen zu einem wesentlichen Teil aus Elektroden, die sauber übereinanderliegen liegen müssen. In der industriellen Herstellung ist der Aufbau dieses Elektrodenstapels bislang ein technisch und zeitlich besonders aufwändiger Prozess. Viele aufeinanderfolgende Handhabungsschritte und Qualitätskontrollen verlangsamen den Stapelaufbau, sind zur präzisen und beschädigungsfreien Positionierung und Fixierung der Elektroden im Stapel jedoch notwendig. Aufgrund der herausfordernden Positionierung und Fixierung ist die bisherige Stapelbildung der wesentliche Engpass der Batteriezellproduktion und verhindert damit eine kostengünstige und durchsatzstarke Serienfertigung. Zur deutlichen Steigerung der Geschwindigkeit und gleichzeitigen Vermeidung von Beschädigungen in der Stapelbildung wurde an der Technischen Universität Braunschweig ein innovatives Verfahren entwickelt. Weiterlesen
Grüner Wasserstoff aus Pflanzenresten
Bislang werden Grünabfälle und Klärschlamm meist kompostiert oder verbrannt. Sinnvoller wäre es, daraus den wertvollen Energieträger Wasserstoff zu gewinnen. Dieses Ziel verfolgt ein Forscherteam am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA. Das bei der Gewinnung von Wasserstoff aus Abfällen entstehende CO2 wird dabei abgeschieden und beispielsweise in der chemischen Industrie als Rohstoff verwendet. Auf diese Weise stellen die Forschenden aus dem Bioabfall mit unterschiedlichen Verfahren Wasserstoff mit einem negativen CO2-Fußabdruck her. Es wird also der Atmosphäre CO2 entzogen. Weiterlesen
CO2-neutrale Aluminiumherstellung
Bei der Aluminiumgewinnung wird pro Tonne Rohmaterial ein Vielfaches an CO2 ausgestoßen. Daran hat sich in fast eineinhalb Jahrhunderten industrieller Aluminiumerzeugung nicht viel geändert. Isabella Gallino vom Lehrstuhl für Metallische Werkstoffe der Universität des Saarlandes möchte dies nun gemeinsam mit dem Industriepartner Trimet ändern. Sie erforschen eine Methode, bei der statt CO2 reiner Sauerstoff als Nebenprodukt anfällt.
Manche Dinge brauchen Zeit, die einen mehr, die anderen weniger. Im Falle von Isabella Gallino und gemessen an menschlichen Maßstäben war es schon eine ordentliche Zeit, die vergehen musste, bis das Thema ihrer Doktorarbeit nun Eingang in die Praxis findet, nämlich gut 20 Jahre. Es könnte aber ein Eingang mit großem Bahnhof sein, denn Gallinos Doktorarbeit ebnet möglicherweise einem Paradigmenwechsel in der energieintensiven Aluminiumindustrie den Weg. Am Ende steht nichts weniger als die Möglichkeit, Aluminium CO2-neutral herstellen zu können. Weiterlesen
Druckbarer Klebstoff für Solarmodule
Solarmodule mit Drucktechniken fertigen – das könnte bei der Energiewende das Tempo erhöhen und gleichzeitig die Kosten senken. Möglich wird das mithilfe eines leitfähigen und druckbaren Klebstoffs, den Forschende des Karlsruher Instituts für Technologie (KIT) und das Unternehmen PROTAVIC INTERNATIONAL in einem gemeinsamen Projekt zur Marktreife bringen. Beim Innovationswettbewerb NEULAND haben sie nun den Transferpreis gewonnen.
Der Spezialkleber soll die Herstellung von Photovoltaik-Modulen stark vereinfachen und dabei den Energie- und Materialverbrauch senken. „Dank der neuen Klebetechnologie werden Lötverbindungen überflüssig“, erklärt Professor Norbert Willenbacher das neue Verfahren, das er mit seinem Team am Institut für Mechanische Verfahrenstechnik und Mechanik (MVM) des KIT entwickelt hat. Weiterlesen
Composite-Werkstoffe eröffnen neue Konzepte für klimafreundliche Luftfahrtindustrie
Laut DLR-Prognose steigen die Passagierzahlen in der kommerziellen Luftfahrt von vier Milliarden in 2016 auf 9,5 Milliarden bis 2040 – und mit ihnen der CO2-Ausstoß. Der Bedarf an klimafreundlichen Flugzeugen war nie dringender. Neuartige Composite-Werkstoffe sind hierfür der Schlüssel.
Die globale Luftfahrt trägt derzeit etwa drei Prozent zum weltweiten CO2-Ausstoß bei. Dass dieser Wert deutlich steigen wird, liegt auf der Hand. Das stellt die Branche im Sinne des Klimaschutzes vor Handlungsbedarf. Dies hat auch die Politik erkannt und verschiedene Rahmenbedingungen gesetzt. Das Klimaschutzpaket „Fit for 55“ der Europäischen Union gibt beispielweise vor, die Treibhausgase in der EU bis 2030 um mindestens 55 Prozent gegenüber dem Ausstoß 1990 zu reduzieren und Europa bis 2050 klimaneutral zu gestalten. Für die Luftfahrt sollen Instrumente wie eine Beimischquote für Alternativkraftstoffe, eine Kerosinsteuer und eine Verschärfung des Emissionshandels die CO2-Reduktion vorantreiben. Weiterlesen
Technologiespezifische Rohstoffe zeigen in der Ökobilanz sehr kurze Nutzungsdauer
Wie lange werden metallische und mineralische Rohstoffe im Wirtschaftskreislauf genutzt – und wann endet ihre Verwendbarkeit? Diese Fragen zur Ökobilanz von 61 Metallen beantworten Forschende aus Bordeaux, Augsburg und Bayreuth. In einer mehrjährigen Forschungskooperation wurden veröffentlichte und auch selbst erfasste Daten zu 61 Metallen analysiert. Wichtigste Erkenntnis: gerade die technologiekritischen Rohstoffe haben eine sehr kurze Nutzungsdauer.
Indoor Photovoltaik
Dr. Diana Freudendahl, Dr. Heike Brandt, Dr. Ramona Langner
Klima und Energie sind aktuell zwei zentrale Themen in Gesellschaft, Politik und Wirtschaft. Dies spiegelt sich auch im Bereich der Forschung und Entwicklung damit verbundener Technologien wider. Als nachhaltige Systeme zur Stromerzeugung spielen hier auch die verschiedenen Formen der Photovoltaik (PV) eine besondere Rolle. Bei dem speziellen Anwendungsbereich der Indoor Photovoltaik (IPV) werden Solarzellen in Innenräumen genutzt, in denen gedämpftes Tageslicht sowie Licht aus künstlichen Quellen (z. B. Glühlampen, Halogenlampen, Leuchtstofflampen und LED-Lampen) vorherrschen. Neben einer deutlich geringeren Lichtintensität (200-1000 Lux, Sonnenlicht: ~100.000 Lux), handelt es sich auch um Licht mit spezifischen Wellenlängen, die ausschließlich im sichtbaren Bereich liegen und deren Absorption bei herkömmlichen Solarzellen weniger gut ausgeprägt ist. Die IPV hat die Aufmerksamkeit der Forschung auf sich gezogen, weil sie eine nachhaltige Energiequelle für die Stromversorgung z. B. von kleinen und kleinsten Verbrauchern in Innenräumen darstellen kann. Gerade in Gebäuden wie beispielsweise Krankenhäusern, Polizeiwachen oder Forschungs- und Bildungseinrichtungen ist das Licht bis zu 24 Stunden am Tag an. Hier könnten zum Beispiel Sensoren für Temperatur, Luftfeuchte, CO2 oder tragbare Elektronik dauerhaft mit IPV betrieben werden. Weiterlesen
Licht macht Ionen beweglich
Verlängerung der Lebensdauer von Hauptwellenlagern in Windkraftanlagen
Das Wachstum der Windkraftindustrie weltweit und die Einführung von Windkraftanlagen mit einer typischen Leistung von mehr als 1 MW haben zur Folge, dass höhere Belastungen und die damit verbundenen Auswirkungen die Lebensdauer der Hauptwellenlager und der Getriebelager beeinträchtigen. Schadens-und Versagensmodi treten früher auf als erwartet und für viele Windparkbetreiber addieren sich die Kosten unerwarteter Reparaturen, die nicht am Turm durchgeführt werden können.
Die Windkraftindustrie fordert deshalb längere Standzeiten für Hauptwellen- und Getriebelager, und die Hersteller arbeiten an Lösungen für den Markt.
„Betreiber planen eine oder vielleicht zwei größere Überholungen der Windkraftanlage über ihren Lebenszyklus“, sagt Tony Fierro, Anwendungsingenieur der Timken Company. „Die Herausforderung besteht darin, dass viele Windkraftanlagen eine größere Überholung noch innerhalb der ersten 7 bis 10 Jahre benötigen. Das bedeutet höhere Ausgaben für Betrieb und Wartung über den Lebenszyklus der Windkraftanlage.