Turbolader für den Lithium-Akku

Einem Team von Materialforschern aus Jülich, München und Prag gelang die Herstellung eines Verbund-Werkstoffs, der sich besonders gut für Elektroden in Lithium-Batterien eignet. Das sogenannte Nanokomposit-Material könnte nicht nur die Speicherkapazität und Lebensdauer der Batterien deutlich steigern, sondern auch ihre Ladegeschwindigkeit.

Ob für Handy, Tablet oder Elektroauto: Lithium-Ionen-Akkus sind das Maß der Dinge. Ihre Speicherfähigkeit und Leistungsdichte sind der anderer wiederaufladbarer Batteriesysteme weit überlegen. Doch trotz aller Fortschritte halten Smartphone-Batterien nur einen Tag lang, Elektroautos brauchen Stunden zum Aufladen. Wissenschaftler arbeiten deswegen Möglichkeiten, die Energiedichten und Laderaten der Allround-Batterien weiter zu verbessern. “Ein wichtiger Faktor ist das Anodenmaterial”, erklärt Dina Fattakhova-Rohlfing vom Institut für Energie- und Klimaforschung (IEK-1). Weiterlesen

Elektrisch leitfähige Keramikwerkstoffe als Komponenten für die Elektrotechnik

Bild 1: Beispiele verschiedener elektrisch leitfähiger Keramikwerkstoffe mit typischen Widerstands-
werten bei 20 °C

Einleitung

Keramische Werkstoffe sind mit Bezug zur Elektrotechnik vor allem als Isolationsmaterialien bekannt. Dass Keramiken oft auch wegen ihrer elektrischen Funktionalität als Leiter genutzt werden, bleibt eher verborgen. Tatsächlich verfügt die Werkstoffklasse Keramik hinsichtlich der elektrischen Leitfähigkeit über den größten Bereich aller Werkstoffklassen mit spezifischen Widerständen bei Raumtemperatur von 10^14 bis 10^-5 Ωcm. Neben der elektrischen Variabilität kann Keramik mit ihren typischen Eigenschaften wie thermische Beständigkeit, hoher Widerstand gegen Verformung, gegen Verschleiß oder chemische Korrosion unikale Anforderungsprofile auch in der Elektrotechnik erfüllen. Weiterlesen

Neuartige Preformen aus hochsteifen technischen Fasern für Verbundkeramiken

Abbildung 1: Einteilung der textilen Gebilde in Anlehnung an DIN 60000

Um neuartige, faserverstärkte keramische Verbundwerkstoffe (CMC = Ceramic Matrix Composites) bei Temperaturen oberhalb 1000 °C dauerhaft einsetzen zu können, erarbeitet der Lehrstuhl Keramische Werkstoffe (Universität Bayreuth) gemeinsam mit unterschiedlichen Projektpartnern Konzepte für neue textile Preformen aus keramischen Hochleistungsfasern. Übergeordnetes Ziel der Zusammenarbeiten ist es, Lücken zum internationalen Stand der Technik zu schließen und neue Erkenntnisse zu schaffen. Im folgenden Artikel werden die Anforderungen an Preformen erläutert, sowie neuartige textile Fertigungstechniken und Anwendungsbeispiele gezeigt. Weiterlesen

Gradierte Massivwerkstoffe

Dr. Heike Brandt, Dr. Diana Freudendahl, Dr. Ramona Langner

Der zunehmende Bedarf an Miniaturisierung und Gewichtseinsparung führt dazu, dass die Anforderungen an Werkstoffe steigen und darüber hinaus immer häufiger auch zusätzliche Funktionalitäten übernommen werden sollen. Dies kann oft nicht von einem Werkstoff alleine erfüllt werden und unterschiedlichste Polymere, Metalle und Keramiken werden innerhalb der einzelnen Werkstoffklassen oder aber Werkstoffklassen-übergreifend kombiniert. In vielen Fällen weisen solche homogenen Komposite jedoch abrupte Eigenschaftsübergänge auf, die speziell bei starker mechanischer oder thermischer Belastung Schwachstellen darstellen können. Das Konzept der Gradientenwerkstoffe mit kontinuierlichen Eigenschaftsübergängen wurde Mitte der 1980er-Jahre in Japan geprägt, indem sie nicht nur theoretisch beschrieben, sondern als Barriere für extreme thermische Spannungen, wie sie in der Raumfahrt auftreten, herangezogen wurden. Weiterlesen

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

© Fraunhofer IMWS
Biobasierte Laminate auf der Basis einer Polymilchsäure-Polypropylen-Matrix im Verbund mit unidirektional ausgerichteten Celluloseregeneratfasern in verschiedenen Aufbauten.

Autos sollen leichter und damit umweltschonender werden. Ein wichtiger Ansatz dabei ist es, metallische Bauteile durch Faser-Kunststoff-Verbunde mit gleicher Stabilität zu ersetzen. Ein Team des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS in Halle (Saale) hat gemeinsam mit Partnern endlosfaserverstärkte Kunststoff-Verbunde entwickelt, die nicht nur sehr gute Leichtbau-Eigenschaften besitzen, sondern sogar auf Basis nachwachsender Rohstoffe hergestellt worden sind. Weiterlesen

Porositätscharakterisierung von CFK-Werkstoffen mit der Mikro-Computertomografie

Es gibt unterschiedliche fertigungsbezogene Fehlstellen in karbonfaserverstärkten Kunststoffen (CFK) und sie haben meist eines gemeinsam: Die Verminderung der mechanischen Festigkeit. Porosität hat in CFK-Werkstoffen einen wesentlichen Einfluss auf die Übertagung von Schubkräften. Die intralaminare Scherfestigkeit nimmt bis ca. 4 Vol.-% Porosität näherungsweise um ca. 7 % je Volumenprozent ab. Eine präzise Ermittlung des Porositätsgehalts kann daher entscheidend für das Versagen von industriellen Bauteilen sein. Gerade im Bereich der Luftfahrt kann das mit verehrenden Folgen verbunden sein. Großflächige Untersuchungen hinsichtlich der Porosität sind hier sehr wichtig.

Abb.1: Verschiedene Porenformen in CFK-Werkstoffen

Weiterlesen

Warum nicht mal in Keramik? Keramische Lösungen für den Maschinenbau

Wälzlager mit aufgedruckten und lasergesinterten Sensoren zur Dehnungs- und Körperschallmessung.

Keramische Werkstoffe erfüllen heute in den verschiedensten Anwendungen zuverlässig ihre Aufgaben. Ihr Eigenschaftspotenzial kommt vor allem bei komplexen Anforderungen zum Tragen, wo andere Werkstoffe deutliche Defizite aufweisen. So werden Hochleistungskeramiken u. a. in verschleiß- und temperaturkritischen Bereichen von Maschinen und Anlagen eingesetzt. Sie werden ständig weiter entwickelt und besitzen mittlerweile Eigenschaftsprofile, die vor wenigen Jahren noch undenkbar waren. Dazu tragen wesentlich die immer weiter spezialisierten Herstellungsverfahren und maßgeschneiderten Rohstoffe bei. Weiterlesen

Materialforscher entwickeln neue Klasse metallischer Gläser

Drei junge Forscher der Universität des Saarlandes haben eine neue Klasse so genannter amorpher Metalle entwickelt. Da diese Legierungen, auch metallische Gläser genannt, ganz andere Eigenschaften als ihre Ausgangsmaterialien haben, eignen sie sich hervorragend beispielsweise für Leichtbauteile in Luft- und Raumfahrt. Die Forscher des Lehrstuhls für Metallische Werkstoffe konnten in jahrelanger Arbeit eine Legierung aus Titan und Schwefel erzeugen, die sehr leicht ist und gleichzeitig eine hohe Festigkeit besitzt.

Materialforschung ähnelt einem Puzzle aus tausenden Teilen: Wenn man nicht das richtige Teil findet, mit dem man anfangen kann, stochert man mehr im Dunkeln als dass man ein zusammenhängendes Bild hinbekommt. Auf der Suche nach diesem Puzzleteil waren auch Alexander Kuball, Benedikt Bochtler und Oliver Gross. Die Doktoranden am Lehrstuhl für Metallische Werkstoffe von Professor Ralf Busch haben nun in Zusammenarbeit mit dem Technologiekonzern Heraeus nach hunderten Versuchen und mehreren Jahren Forschung Legierungen entwickelt, die eine sehr hohe Festigkeit besitzen und gleichzeitig sehr leicht sind. Weiterlesen

Biofilme als Bauarbeiter

Rotalgen bewegen sich zum Licht hin und scheiden dabei Ketten aus Zuckermolekülen aus. Durch zeitlich veränderliche Lichtmuster gewinnen die Forscher und Forscherinnen aus diesen langen, feinen Polymerfäden maßgeschneiderte Schablonen, die sie für Funktionskeramiken verwenden. (Foto: v. Opdenbosch/TUM)

Wegen möglicher Gefahren für Mensch oder Material werden Biofilme meist als Problem bekämpft. Doch verfügen diese Gemeinschaften von Algen, Pilzen oder Bakterien über wissenschaftlich und technisch interessante Eigenschaften. Ein Team der Technischen Universität München (TUM) beschreibt Verfahren aus der Biologie, die Biofilme als Bauarbeiter von Strukturschablonen für neue Werkstoffe einsetzen, welche die Eigenschaften natürlicher Materialien besitzen. Dies war bislang nur eingeschränkt möglich.

Ob Holz, Knochen, Perlmutt, oder Zähne – über Jahrmillionen sind solche Materialien durch die Evolution nach dem Prinzip angepasster Stabilität bei möglichst geringem Gewicht optimiert worden. Für viele technologische Entwicklungen lieferte die Natur die Blaupause. Beispiele dafür sind Flugzeugflügel, der Klettverschluss oder die Oberflächenversiegelung per Lotuseffekt. Doch erreichen die Nachbauten nicht die strukturelle Komplexität des natürlichen Originals. Weiterlesen

Faserverbundwerkstoffe mit Cellulosefaserverstärkung für Automobilanwendungen

Autoren: Katrin Ganß, Thomas Reußmann, Renate Lützkendorf

Einleitung

Naturfasern wie Flachs, Hanf oder auch Kenaf werden seit mehr als 30 Jahren in der Automobilindustrie zur Herstellung naturfaserverstärkter Kunststoffe (NFK) bspw. für Türverkleidungen, Instrumententafelträger oder Kofferraumauskleidungen eingesetzt. Mittlerweile haben sich diese Materialien unter anderem aufgrund ihrer hervorragenden Performance wie:

  • hohe mechanische Kennwerte,
  • gute Dämpfungseigenschaften und
  • der geringen Faser- bzw. Verbunddichte

fest etabliert [1]. Insbesondere die geringe Verbunddichte (bei gepressten Bauteilen mit PP-Matrix bis zu 0,6 g/cm³ möglich [2]) macht NFK vor allem im Hinblick auf ihr Leichtbaupotential sehr interessant [3].Trotz der überaus positiven Eigenschaften, welche den breiten Einsatz dieser Verbunde in der Industrie erst ermöglichten, gibt es auch Defizite [1, 4]:

  • Emissionen (Fogging, Geruch), welche durch die chemische Zusammensetzung (insbesondere Pektine, Wachse, Lignin) hervorgerufen werden
  • Niedrige Schlagzähigkeit (problematisch bei crashbeanspruchten Bauteilen)
  • Natürliche Qualitätsschwankungen (Feinheit, Festigkeit, Faserlänge, Schäbenanteil)
  • Lokal begrenzte Verfügbarkeit und Preisschwankungen

Weiterlesen