Energetische, Wirtschaftliche und Arbeitsmedizinische Aspekte zur Schweißtechnik

Abbildung 1: Einfluss der Schweißnahtgeometrie auf die Abkühlzeit t8/5 und den Wärmestrom beim MSG-Schweißen (Parameter: Standardlichtbogen bei v D = 10 m/min; PA-Schweißposition; Zusatzwerkstoff d = 1,2 mm G3Si1; Grundwerkstoff: S235; Schutzgas 15 l/min 82 % Ar, 18 % CO2; Schweißgeschwindigkeit 70 cm/min; Kontaktrohrabstand 18 mm)

Einleitung

Um die Wirtschaftlichkeit beim Schmelzschweißen zu erhöhen können Fülldrahtelektroden eingesetzt werden, welche aber gleichzeitig eine höhere Emission an gesundheitsschädlichen Stoffen beim Schweißen bewirken. Das Schmelzschweißen, als eine Möglichkeit Stahlbauteile zu fügen, spielt nach wie vor eine bedeutende Rolle in heutigen Konstruktionen. Fortlaufend wird an neuen Stahlsorten geforscht und vorhandene in ihren Eigenschaften weiter entwickelt. Das große Ziel ist, Stähle schnell und einfach zu fügen um damit wirtschaftlich Produkte herstellen zu können. Das Schmelzschweißen führt im Werkstoff grundsätzlich und unweigerlich zu einer Änderung des Gefüges. Dies hat wiederum großen Einfluss auf die mechanischen Eigenschaften der Schweißverbindung. Für die Charakterisierung des Zeit-Temperatur-Verlaufs kommt dem Bereich zwischen 800 und 500 °C (sogenannte t8/5-Zeit) hohe Bedeutung zu, da dort die Gefahr unzulässiger Aufhärtung bzw. die Verminderung der Streckgrenze besteht. Für ein wirtschaftliches Schweißen müssen diese Kenntnisse vorliegen. Weiterhin besteht für das Personal, welches Schweißarbeiten durchführt, aber auch für Personen die sich in unmittelbarer Nähe des Bereiches der Schweißarbeitsplätze befinden, eine erhebliche Gefahr durch Strahlung und durch die Entstehung von alveolengängigen Schweißrauch. Die Professur Schweißtechnik der Technischen Universität Chemnitz ist mit mehreren Forschungsprojekten in diesen Bereichen aktiv. Einen repräsentativen Einblick aus diesen Projekten bietet der vorliegende Artikel. Weiterführende Informationen sind unter https://www.tu-chemnitz.de/mb/SchweiTech/ zu finden. Weiterlesen

Bestimmung und Berechnung der Gehäusefestigkeit für montierte Lagereinheiten. Warum das für die Betriebsoptimierung wichtig ist.

Stehlager – Sie werden von Konstrukteuren in nahezu allen Industriebereichen für eine Vielzahl von anspruchsvollen wie unkonventionellen Anwendungen eingesetzt. Um das für einen optimalen Betrieb adäquate Wälzlager auswählen zu können, sind Daten, die Aufschluss über die Leistungsanforderungen an die Gehäusefestigkeit geben, zentral.

Welche Konstruktionsüberlegungen sind etwa anzustellen, wenn die Anwendung eine Stehlagerinstallation in nicht-horizontaler Ausrichtung erfordert? Und was passiert, wenn die Lagerlast nicht durch das Unterteil der Stehlagereinheit aufgebracht wird? Antworten auf diese Fragestellungen erleichtern die Wahl eines geeigneten Stehlagers für die jeweilige Anwendung. Timken greift dafür auf physikalische Prüfungen, hochentwickelte Modellierungen und auf praktische Erfahrungen zurück. Weiterlesen

Schutzschichten für keramische Faserverbundwerkstoffe

Abbildung 1: Bruchfläche eines CMC; Fasern wurden aus dem Gefüge herausgezogen und ermöglichen damit schadenstolerantes Verhalte

Keramische Faserverbundwerkstoffe

Verbundwerkstoffe aus keramischen Fasern umgeben von einer keramischen Matrix werden in der Fachwelt als CMC (Ceramic Matrix Composites) bezeichnet und sind eine sehr junge Werkstoffklasse. Im Vergleich zu metallischen oder polymeren Verbundwerkstoffen, dienen die Fasern in CMC nicht der Erhöhung der Festigkeit oder Steifigkeit, sondern ermöglichen durch den Faser-Pull-Out (Verbrauch von Energie beim Risswachstum) ein quasiduktiles oder auch schadenstolerantes Verhalten (Abbildung 1). Defekte, welche in dichten Hochleistungskeramiken zum katastrophalen Versagen führen würden, werden durch CMC ohne weiteres ertragen und ermöglichen den Einsatz in sicherheitsrelevanten Anwendungen. Weiterlesen

Forscher entwickeln festes Material mit beweglichen Partikeln, die auf äußere Einflüsse reagieren

In den meisten Materialien bewegt sich wenig. Aber in einem neuen „aktiven Nanokomposit“ wimmelt es gewaltig: Kleine Partikel verbinden sich oder trennen sich und ändern damit die Farbe des ganzen Materials. Es stammt von Forschern des Leibniz – Institut für Neue Materialien in Saarbrücken, die Materialien so mehr Dynamik verleihen wollen. Dank der beweglichen Komponenten kann das transparente Material auf Temperaturveränderungen und zukünftig auch auf andere äußere Einflüsse, wie chemische Substanzen und Gifte, durch einen Farbwechsel „antworten“. Deshalb arbeiten die Forscher in absehbarer Zeit zum Beispiel daran, Folienverpackungen zu entwickeln, die ihre Farbe verändern, wenn Lebensmittel verdorben sind.

Bewegliche Partikel in eingeschlossenen Flüssigkeitströpfchen ändern die Farbe fester Materialien: Bei höherer Temperatur (links) bewegen sie sich einzeln in den Tropfen und geben dem festen Material eine rubinrote Farbe; bei niedriger Temperatur (rechts) ballen sich zusammen und verändern die Farbe zu Grau-Violett. Quelle: INM

Weiterlesen

Faden-Kunst aus Roboterhand

Copyright: TU Wien

Als „String Art“ bezeichnet man Bilder aus kunstvoll gespannten Fäden. Was bisher Erfahrung und eine ruhige Hand benötigte, gelingt an der TU Wien nun mit einem Roboter – ein Beispiel, welch komplexe Aufgaben digitale Fabrikation mittlerweile lösen kann.

Die Grundidee ist einfach: Auf einem Brett befinden sich Nägel, und zwischen ihnen soll ein langer Faden so hin und her gespannt werden, dass er ein bestimmtes Bild ergibt. Recht einfach lassen sich so interessante geometrische Muster produzieren. Den wahren Profis gelingt es sogar, durch eine ausgeklügelte Anordnung der Fadenlinien ein Portrait zu erstellen.

An der TU Wien hat man diese Kunstform nun automatisiert: Beliebige Bilder können verwendet werden, der Computer berechnet den optimalen Faden-Weg, der das gewünschte Bild möglichst exakt wiedergibt. Ein Industrie-Roboter übernimmt dann die Arbeit des Fadenspannens und erzeugt ein kreisrundes Fadenbild. Weiterlesen

Neuer Hybridwerkstoff aus Holz und Metall für den Leichtbau

© Fraunhofer WKI Aus ökologischer Sicht eignen sich Holzschäume sehr gut für eine Vielzahl von Einsatzbereichen.

Holzschaum und Metallschwamm – passt das zusammen? Dieser Frage gingen Expertinnen und Experten vom Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut, WKI im Projekt »HoMe-Schaum« – das Kürzel steht für Holz-Metall-Schaum – gemeinsam mit den Wissenschaftlern des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik IWU und des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM nach. Das Ergebnis: Die gegensätzlichen Werkstoffe harmonieren perfekt. Der neuartige Materialmix zeichnet sich durch seine sehr guten dämmenden Eigenschaften und eine niedrige Biegefestigkeit aus. Weiterlesen

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen

Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel. Die Oberflächen solcher Objekte sind jedoch nie zu hundert Prozent glatt. Selbst Oberflächen, die für das menschliche Auge glatt aussehen, sind meist mikroskopisch rau. Damit das Haften auch auf solchen rauen Oberflächen verlässlich klappt, haben Wissenschaftler am Leibniz-Institut für Neue Materialien eine neue Haftstruktur entwickelt: Darin kombinierten sie harte und weiche Materialien. Sie stellten fest, dass diese Materialkombination deutlich besser auf rauen Oberflächen haftet, als solche Strukturen, die nur aus einem weichen Material gefertigt sind.

Damit lassen sich nicht nur industrielle Handling-Prozesse verbessern und sicherer machen. Die Materialien sind auch vielversprechend für Anwendungen auf der Haut, wie zum Beispiel für selbsthaftende Wundverschlüsse oder sogenannte Wearables – vernetzte Computer, die direkt auf der Haut getragen werden könnten. Weiterlesen

Auf dem Weg zum sauberen Verbrennungsmotor

Vollmotor-Prüfstand im Motorenlabor des TUM-Lehrstuhls für Verbrennungskraftmaschinen in München-Moosach
Bild: Mortiz Ermert / TUM

Autos mit Verbrennungsmotoren, die keine Emissionen verursachen – mit synthetischen Kraftstoffen wie Oxymethylenether wäre das denkbar. Forscher der Technischen Universität München (TUM) haben getestet, wie sich ein solcher Kraftstoff im Motor verhält und ein optimiertes Brennverfahren entwickelt.

Sie erzeugen Kohlendioxid, Feinstaub und Stickoxide: Verbrennungsmotoren stehen in der Kritik, in vielen Innenstädten gelten bereits Fahrverbote für bestimmte Dieselfahrzeuge. Synthetische Kraftstoffe wie die Gruppe der Oxymethylenether (OME) könnten die Lösung sein. Sie verbrennen fast ohne unerwünschte Nebenprodukte wie Rußpartikel oder Kohlenwasserstoffe. Gegenüber anderen, schon länger bekannten Designerkraftstoffen bieten sie damit einen zusätzlichen Vorteil für die Luftqualität. Es gibt allerdings auch Nachteile: Die Herstellungskosten sind höher als die der fossilen Kraftstoffe und noch gibt es keine Anlagen für die Produktion. Weiterlesen

Auf dem Weg zum biobasierten Mörtel

Grundlagen für biobasierten 2-Komponenten-Mörtel entwickelt

Das Leibniz-Institut für Polymerforschung Dresden (IPF), die Hilti Entwicklungsgesellschaft und die FIT Umwelttechnik (FIT) haben 2-Komponenten-Mörtel mit neuartigen biobasierten Reaktivverdünnern entwickelt.Das Vorhaben wurde vom Bundesministerium für Ernährung und Landwirtschaft (BMEL) über den Projektträger Fachagentur Nachwachsende Rohstoffe e. V. (FNR) gefördert.

Ein handelsüblicher, aushärtender 2-Komponenten-Mörtel besteht im Wesentlichen aus einem fossil-basierten Grundharz und einer ebenfalls fossil-basierten Reaktivkomponente (RK). Der Masse-Anteil der RK an der Gesamtmischung liegt bei etwa einem Drittel. Ziel im Projekt „Biobasierte Harze für die chemische Befestigungstechnik“ war es, diese Komponente aus nachwachsenden Rohstoffen zu gewinnen. Hierzu wurden neben Pflanzenölderivaten auch Itaconsäureester und Isosorbidderivate getestet. Dabei suchten die Forscher nach relativ einfach und schnell ablaufenden Synthesen, die sich perspektivisch auch für eine nachhaltige industrielle Herstellung eignen. Weiterlesen

Namhafte Wissenschaftsinstitute und Raumfahrtunternehmen bündeln ihre Kräfte, um neue Weltraumtechnologien zu entwickeln

Electronics manufacturing at OHB: inspection of a circuit board with microscopy © OHB System AG

Das Institut Laue-Langevin (ILL) und die European Synchrotron Radiation Facility (ESRF) arbeiten zukünftig mit den führenden europäischen Raumfahrtunternehmen OHB System AG und MT Aerospace AG zusammen, um Herausforderungen der Branche anzugehen. Sie bündeln ihre Kräfte, um mittels Röntgenstrahlung und Neutronen die Charakterisierung von Werkstoffen für die Luft- und Raumfahrt zu verbessern und gleichzeitig die Herstellungsprozesse effizienter zu gestalten.

Die Erforschung des Weltraums hat viele gesellschaftliche Vorteile mit sich gebracht, die die Lebensqualität auf der Erde erheblich verbessert haben. Die ersten Satelliten lieferten entscheidendes Wissen und Fertigkeiten in der Telekommunikation, Navigation und Fortschritte bei der Wettervorhersage. Die erfolgreiche Erkundung des Weltraums umfasst eine Fülle an Missionen, die fortschrittliche Systeme und Fähigkeiten erfordern. Diese werden die Entwicklung vieler kritischer Technologien, einschließlich hochentwickelter Materialien und Strukturkonzepte beschleunigen. Weiterlesen