Metallhalogenid-Perovskite

Dr. Ramona Langner, Dr. Heike Brandt, Dr. Diana Freudendahl

Metallhalogenid-Perovskite wurden quasi über Nacht zu einem enorm vielversprechenden Werkstoff für die Photovoltaik, als sich auf diesen Materialien basierende Solarzellen innerhalb von nur wenigen Jahren soweit verbessern ließen, dass sie in ihrer Effizienz mit etablierten Silizium- und Dünnschichtsolarzellen konkurrieren konnten. Zuletzt hat sich jedoch herausgestellt, dass sie daneben auch ein großes Potenzial für eine Vielzahl weiterer Anwendungen im Bereich der Photonik und Optoelektronik aufweisen. Insbesondere erhofft man sich von ihrer Nutzung, optische Bauteile wie Wellenleiter, Laser, Leuchtdioden (LEDs) oder Photodetektoren weiter miniaturisieren zu können. Weiterlesen

Künstliche Muskeln

Dr. Diana Freudendahl, Dr. Carsten Heuer, Dr. Ramona Langner

Aktoren, also Antriebselemente, die zumeist elektrische Signale in mechanische Bewegung umwandeln, sind allgegenwärtig. Klassische Beispiele sind pneumatische oder hydraulische Systeme, die sich in ihrem Design am natürlichen Pendant, den Muskeln, orientieren. Materialien und technische Komponenten, die reversible Formveränderungen (z. B. Kontraktion, Expansion oder Rotation) ausführen und so die Funktionen von natürlichen Muskeln imitieren können, werden daher auch als künstliche Muskeln bezeichnet. Weiterlesen

Werkzeugschrank WKS

Apfel WKS Werkzeugschränke lagern Werkzeuge und Gebrauchsartikel übersichtlich,
griffbereit und sicher.

Durch seine professionellen Lösungen für die Werkzeuglagerung hat sich Apfel als renommierte Marke in der Welt der Metallverarbeitung etabliert.

Mit der Idee, Werkzeuge – ähnlich wie in Apothekerschränken – in Vertikalauszügen zu lagern, entwickelte der Dossenheimer Betriebseinrichter den inzwischen bewährten Werkzeugschrank WKS.

Das einfache aber geniale Prinzip der senkrecht verbauten Auszüge sammelt mit seiner effektiven Raumnutzung und dem beidseitigen Zugriff aber auch überall da klare Pluspunkte, wo viele verschiedene Teile auf geringster Fläche untergebracht werden müssen.

Die übersichtliche Anordnung und die gute Erreichbarkeit aller Artikel sind Vorteile, die auch im Warenlager, in der Montage und in der Instandhaltung zählen. Weiterlesen

Lochen hybrider Bauteile mit minimalem Schädigungsgrad

Abbildung 1: Projektumfang und Anwendungsgebiet gelochter Hybridbauteile; Widerstandspunktschweißen (links), Blindnietverbindung (rechts)

Hybride Bauteile aus Kunststoff und Metall rücken zunehmend in den Fokus von Forschung und Industrie. Ein hohes Leichtbaupotenzial macht diese Werkstoffkombination in vielen Anwendungsbereichen interessant. Die Vorteile der Hybridisierung beschränken sich jedoch nicht nur auf die optimale Nutzung der jeweiligen Materialeigenschaften. Vorzugsweise werden hybride Bauteile daher in Branchen mit gewichtsrelevanten Betriebskosten, wie beispielweise der Luft- und Raumfahrt, eigesetzt. Mit zunehmender gesellschaftlicher und politischer Bedeutung der Ressourceneffizienz sind diese entwicklungsintensiven Bauteile auch für die Automobilbranche relevant geworden. Die wichtigsten Herausforderungen sind hierfür wirtschaftliche Prozesse für die Großserie. Weiterlesen

Additive Fertigung in der Instandhaltungslogistik

Abb. 1: Beispiele für additiv gefertigte Ersatzteile bei der STURM GmbH (Quelle: STURM GmbH)

Additive Fertigung

Die Anforderungen an den Produktionssektor werden im Zuge der Digitalisierung immer vielfältiger. Kundenwünsche nach individualisierten Produkten, kurzen Servicezeiten und hohen Verfügbarkeiten nehmen immer weiter zu. Konventionelle Produktionsanlagen stehen damit vielfältigen Herausforderungen gegenüber. Kleiner werdende Losgrößen und verkürzte Lieferzeiten besonders für Ersatzteile zwingen viele Unternehmen zum Umdenken. Vor diesem Hintergrund gewinnt die additive Fertigung (eng.: additive manufacturing) an Relevanz. [Breuniger et al. 2013, S. 5 ff.] Weiterlesen

Lager-Killer – wie man Schäden an Lagersystemen vermeidet

Abb. 1 Bildquelle: The Timken Company

Von Russell Folger, Jerry Rhodes und David Novak, The Timken Company

Lager-„Killer“ sind Bedingungen, die einem Lagersystem Schaden zufügen und dessen Lebensdauer vorzeitig beenden können. Die vier häufigsten Ursachen sind:
Ungeeignete Schmierung, Verschmutzung, Überlast, falsche Handhabung und Installation. Diese Ursachen betreffen eine Vielzahl von Lagertypen, darunter Zylinderrollen-, Pendelrollen-, Nadel-, Kegelrollen- und Kugellagerkonstruktionen.

Die Folgen von Lagerschäden an industriellen Anlagen können erheblich sein:
Verletzungen von Anlagenpersonal, reduzierte Betriebseffizienz, Kosten für Lagerreparatur oder Lagerersatz, Kosten für Reparatur oder Ersatz anderer Komponenten – wie z. B. Gehäuse oder Wellen –, die durch von den beschädigten Lagern ausgehende Vibrationen oder hohe Temperaturen beschädigt werden können, sowie ungeplante Ausfallzeiten von Anlagen. Weiterlesen

Zuckerrübenschnitzel – ein neuer faserartiger Bestandteil für Verbundwerkstoff

Abbildung 1 REM Aufnahmen (© Fraunhofer UMSICHT) von Zuckerrübenschnitzelmahlgut (Herkunft: Jäckering Mühlen und Nährmittelwerke GmbH ) mit D50 ~ 250 μm links und ~ 30 μm rechts. Während bei der gröberen Type kompaktierte „Zellhaufen“ nachgewiesen werden können, sind bei der feinen Type im Wesentlichen nur Bruchstücke von Zellen sichtbar.

In dem vom Land Nordrhein-Westfalen und der Europäischen Union geförderten Projekt „Werkstoffentwicklung auf Basis von Rübenschnitzeln für marktrelevante Anwendungen“ beschäftigen sich die Unternehmen Byk-Chemie GmbH, Entex Rust & Mitschke GmbH, FKuR Kunststoffe GmbH, Fraunhofer UMSICHT und Fraunhofer WKI, Harold Scholz & Co. GmbH, Jäckering Mühlen- und Nährmittelwerke GmbH, Kunststoff-Institut für die mittelständische Wirtschaft NRW GmbH, Landwirtschaftlicher Betrieb Koch, Nova-Institut GmbH, Pfeifer & Langen GmbH & Co. KG und SWOBODA engineering GmbH mit der Entwicklung eines neuartigen Verbundwerkstoffes, welcher in erster Linie als Compound für die weitere Kunststoffverarbeitung zur Verfügung gestellt werden soll. Weiterlesen

Energieeffizientes Supraleiterkabel für Zukunftstechnologien

In einem neuartigen Verfahren werden am KIT dünne Bänder aus Rare-Earth Barium-Copper-Oxide zu Hochtemperatur-Supraleiterkabeln mit hoher Stromtragfähigkeit verarbeitet (Foto: ITEP, KIT)

Ob für die Anbindung von Windparks, für die Gleichstromversorgung auf Schiffen oder sogar für leichte und kompakte Hochstromleitungen in künftigen vollelektrischen Flugzeugen: Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben ein vielseitiges Supraleiterkabel entwickelt, das auf einfache Weise industriell gefertigt werden kann. Bei moderater Kühlung transportiert es elektrische Energie nahezu verlustfrei. Weiterlesen

Forscher entwickeln Roboterarme biegsam wie Elefantenrüssel: für große Greifer und winzige Endoskope

Sie können sich präzise um Windungen und Ecken schlängeln, bewegen sich frei in alle Richtungen: Die biegsamen Roboterarme, die Professor Stefan Seelecke und seine Forschergruppe an der Universität des Saarlandes entwickeln, haben keine steifen Gelenke, dafür aber Muskeln aus Formgedächtnis-Drähten. Diese brauchen weder Druckluft noch schweres Zubehör, sondern funktionieren nur mit elektrischem Strom. Das Material selbst hat Sensoreigenschaften, daher lassen sich die Arme ohne zusätzliche Sensoren steuern. Große Roboter-Rüssel können mit der neuen Technologie ebenso ausgestattet werden wie haarfeine Tentakel für endoskopische Operationen. Weiterlesen

Hochdruckwasserstrahlen zum flächigen Materialabtrag von hochfesten Werkstoffen erprobt

© Fraunhofer IPT
Demonstratorbauteil, das am Fraunhofer IPT in einer Wasser-Abrasivstrahl-Bearbeitung durch flächiges Abtragen gefertigt wurde.

Beim Fräsen hochfester Werkstoffe wie Oxidkeramik oder Sondermetalle – und besonders bei der Schruppbearbeitung – verschleißen Werkzeuge schnell. Für Unternehmen ist die Bearbeitung dieser Werkstoffe deshalb mit hohen Kosten verbunden. Im Projekt »HydroMill« hat das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen mit seinen Projektpartnern nun gezeigt, dass sich der Hochdruckwasserstrahl zum flächigen Materialabtrag von hochfesten Werkstoffen eignet. War der Einsatz von Wasserstrahlen bislang auf die Schneidbearbeitung beschränkt, zeigen die Projektergebnisse, wie sich hochfeste Werkstoffe kosten- und ressourcenschonender als bisher flächig abtragen lassen. Weiterlesen