Forscher entwickeln festes Material mit beweglichen Partikeln, die auf äußere Einflüsse reagieren

In den meisten Materialien bewegt sich wenig. Aber in einem neuen „aktiven Nanokomposit“ wimmelt es gewaltig: Kleine Partikel verbinden sich oder trennen sich und ändern damit die Farbe des ganzen Materials. Es stammt von Forschern des Leibniz – Institut für Neue Materialien in Saarbrücken, die Materialien so mehr Dynamik verleihen wollen. Dank der beweglichen Komponenten kann das transparente Material auf Temperaturveränderungen und zukünftig auch auf andere äußere Einflüsse, wie chemische Substanzen und Gifte, durch einen Farbwechsel „antworten“. Deshalb arbeiten die Forscher in absehbarer Zeit zum Beispiel daran, Folienverpackungen zu entwickeln, die ihre Farbe verändern, wenn Lebensmittel verdorben sind.

Bewegliche Partikel in eingeschlossenen Flüssigkeitströpfchen ändern die Farbe fester Materialien: Bei höherer Temperatur (links) bewegen sie sich einzeln in den Tropfen und geben dem festen Material eine rubinrote Farbe; bei niedriger Temperatur (rechts) ballen sich zusammen und verändern die Farbe zu Grau-Violett. Quelle: INM

Weiterlesen

Faden-Kunst aus Roboterhand

Copyright: TU Wien

Als „String Art“ bezeichnet man Bilder aus kunstvoll gespannten Fäden. Was bisher Erfahrung und eine ruhige Hand benötigte, gelingt an der TU Wien nun mit einem Roboter – ein Beispiel, welch komplexe Aufgaben digitale Fabrikation mittlerweile lösen kann.

Die Grundidee ist einfach: Auf einem Brett befinden sich Nägel, und zwischen ihnen soll ein langer Faden so hin und her gespannt werden, dass er ein bestimmtes Bild ergibt. Recht einfach lassen sich so interessante geometrische Muster produzieren. Den wahren Profis gelingt es sogar, durch eine ausgeklügelte Anordnung der Fadenlinien ein Portrait zu erstellen.

An der TU Wien hat man diese Kunstform nun automatisiert: Beliebige Bilder können verwendet werden, der Computer berechnet den optimalen Faden-Weg, der das gewünschte Bild möglichst exakt wiedergibt. Ein Industrie-Roboter übernimmt dann die Arbeit des Fadenspannens und erzeugt ein kreisrundes Fadenbild. Weiterlesen

Neuer Hybridwerkstoff aus Holz und Metall für den Leichtbau

© Fraunhofer WKI Aus ökologischer Sicht eignen sich Holzschäume sehr gut für eine Vielzahl von Einsatzbereichen.

Holzschaum und Metallschwamm – passt das zusammen? Dieser Frage gingen Expertinnen und Experten vom Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut, WKI im Projekt »HoMe-Schaum« – das Kürzel steht für Holz-Metall-Schaum – gemeinsam mit den Wissenschaftlern des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik IWU und des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM nach. Das Ergebnis: Die gegensätzlichen Werkstoffe harmonieren perfekt. Der neuartige Materialmix zeichnet sich durch seine sehr guten dämmenden Eigenschaften und eine niedrige Biegefestigkeit aus. Weiterlesen

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen

Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel. Die Oberflächen solcher Objekte sind jedoch nie zu hundert Prozent glatt. Selbst Oberflächen, die für das menschliche Auge glatt aussehen, sind meist mikroskopisch rau. Damit das Haften auch auf solchen rauen Oberflächen verlässlich klappt, haben Wissenschaftler am Leibniz-Institut für Neue Materialien eine neue Haftstruktur entwickelt: Darin kombinierten sie harte und weiche Materialien. Sie stellten fest, dass diese Materialkombination deutlich besser auf rauen Oberflächen haftet, als solche Strukturen, die nur aus einem weichen Material gefertigt sind.

Damit lassen sich nicht nur industrielle Handling-Prozesse verbessern und sicherer machen. Die Materialien sind auch vielversprechend für Anwendungen auf der Haut, wie zum Beispiel für selbsthaftende Wundverschlüsse oder sogenannte Wearables – vernetzte Computer, die direkt auf der Haut getragen werden könnten. Weiterlesen

Auf dem Weg zum sauberen Verbrennungsmotor

Vollmotor-Prüfstand im Motorenlabor des TUM-Lehrstuhls für Verbrennungskraftmaschinen in München-Moosach
Bild: Mortiz Ermert / TUM

Autos mit Verbrennungsmotoren, die keine Emissionen verursachen – mit synthetischen Kraftstoffen wie Oxymethylenether wäre das denkbar. Forscher der Technischen Universität München (TUM) haben getestet, wie sich ein solcher Kraftstoff im Motor verhält und ein optimiertes Brennverfahren entwickelt.

Sie erzeugen Kohlendioxid, Feinstaub und Stickoxide: Verbrennungsmotoren stehen in der Kritik, in vielen Innenstädten gelten bereits Fahrverbote für bestimmte Dieselfahrzeuge. Synthetische Kraftstoffe wie die Gruppe der Oxymethylenether (OME) könnten die Lösung sein. Sie verbrennen fast ohne unerwünschte Nebenprodukte wie Rußpartikel oder Kohlenwasserstoffe. Gegenüber anderen, schon länger bekannten Designerkraftstoffen bieten sie damit einen zusätzlichen Vorteil für die Luftqualität. Es gibt allerdings auch Nachteile: Die Herstellungskosten sind höher als die der fossilen Kraftstoffe und noch gibt es keine Anlagen für die Produktion. Weiterlesen

Auf dem Weg zum biobasierten Mörtel

Grundlagen für biobasierten 2-Komponenten-Mörtel entwickelt

Das Leibniz-Institut für Polymerforschung Dresden (IPF), die Hilti Entwicklungsgesellschaft und die FIT Umwelttechnik (FIT) haben 2-Komponenten-Mörtel mit neuartigen biobasierten Reaktivverdünnern entwickelt.Das Vorhaben wurde vom Bundesministerium für Ernährung und Landwirtschaft (BMEL) über den Projektträger Fachagentur Nachwachsende Rohstoffe e. V. (FNR) gefördert.

Ein handelsüblicher, aushärtender 2-Komponenten-Mörtel besteht im Wesentlichen aus einem fossil-basierten Grundharz und einer ebenfalls fossil-basierten Reaktivkomponente (RK). Der Masse-Anteil der RK an der Gesamtmischung liegt bei etwa einem Drittel. Ziel im Projekt „Biobasierte Harze für die chemische Befestigungstechnik“ war es, diese Komponente aus nachwachsenden Rohstoffen zu gewinnen. Hierzu wurden neben Pflanzenölderivaten auch Itaconsäureester und Isosorbidderivate getestet. Dabei suchten die Forscher nach relativ einfach und schnell ablaufenden Synthesen, die sich perspektivisch auch für eine nachhaltige industrielle Herstellung eignen. Weiterlesen

Prozessabsicherung bei der Entwicklung lackierter Kunststoffteile

Abbildung 1: Lichtkabine für die visuelle Beurteilung von Proben, Bildquelle: Fraunhofer IPA

Visuelle und messtechnische Beurteilung des Erscheinungsbildes (Appearance) lackierter Bauteile

Unterschiedliche Farbtöne sowie Farb- und Glanzeffekte lösen in uns Stimmungen aus. Wir sprechen oftmals von einem Sonnengelb, Nachtblau, Schneeweiß oder einem edlen Schimmer auf der Oberfläche. Ganz automatisch bringen wir neue Farb- und Glanzeindrücke in Verbindung mit bestehenden Erfahrungen, die durchaus einen Kaufwunsch auslösen können.

Die enorme Empfindlichkeit des menschlichen Auges erlaubt es uns mehrere Millionen Farben wahrzunehmen. Kleinste Farb- und Glanzabweichungen oder Lackierfehler reichen aber auch aus, um dem Gesamtbild einen disharmonischen Eindruck zu verleihen. Kein Messgerät ist in der Lage, die Vielfalt an visuellen Eindrücken des menschlichen Auges in gleicher Weise zu erfassen. Rein physikalisch gesehen wird im Auge nur ein zweidimensionales Bild auf der Netzhaut (Retina) erzeugt und dabei verkleinert sowie umgekehrt (das Bild steht auf dem Kopf) abgebildet. Viele einzelne Eindrücke aus unterschiedlichen Winkeln in kürzester Zeit betrachtet (bedingt durch die Augenbewegungen) werden im Sehzentrum des Gehirns zu einem komplexen Gesamteindruck verarbeitet. Das dreidimensionale Bild entsteht erst im Gehirn. Das Sehen ist von Geburt an ein lebenslanger, individueller Lernprozess. Die visuelle Wahrnehmung ist daher eine subjektive Empfindung und zudem von der Tagesform abhängig. Weiterlesen

Den Spritzern auf der Spur – für mehr Hygiene und eine höhere Korrosionsbeständigkeit medizintechnischer Produkte

Abbildung 1: Querschliff einer lasergeschweißten Mischverbindung aus ferritischen und
austenitischen Edelstählen

Heutzutage haben korrosionsbeständige Stähle viele Anwendungsbereiche des täglichen Lebens erobert. So kommen diese in zahlreichen Bereichen zum Einsatz, in denen erhöhte Korrosionsgefahr durch aggressive Medien droht, aber auch für Aufgabenstellungen mit hohen hygienischen Anforderungen. Im Laufe der Zeit wurde eine Vielzahl an verschiedenen korrosionsbeständigen Stählen für spezifische Einsatzgebiete entwickelt, die sich in ihrer Legierungszusammensetzung und Gefügemorphologie teilweise deutlich voneinander unterscheiden. Dies wirkt sich auch auf die Schweißeignung der jeweiligen Werkstoffe aus, die immer dann eine Rolle spielt, wenn einzelne Bauteile im Produktionsprozess durch Schweißen zu einer Baugruppe gefügt werden sollen. Während zum Verbinden massiverer Bauteile meist das Wolfram- oder Metall-Inertgas-Schweißen sowie das Widerstandspunktschweißen Anwendung finden, wird im Bereich filigraner Produkte meist das Laserstrahlschweißen verwendet. Durch dessen konzentrierte Wärmeeinbringung bei gleichzeitig geringem Gesamtenergieeintrag können verzugsarme Schweißbaugruppen in sehr kurzen Taktzeiten hergestellt werden. Am Bayerischen Laserzentrum (blz) konnte darüber hinaus gezeigt werden, dass trotz der stark unterschiedlichen Wärmeausdehnung und Wärmeleitfähigkeit die Möglichkeit besteht, auch Mischverbindungen zwischen austenitischen und ferritischen korrosionsbeständigen Stählen herzustellen, ohne dabei die Duktilität und Festigkeit der Werkstoffe im Bereich der Schweißnaht signifikant zu verringern. Weiterlesen

Schweißen von Kupferwerkstoffen mit grüner Laserstrahlung

Abbildung 1: Versuchsaufbau zur Messung des Einkoppelgrades mithilfe einer Ulbrichtkugel

Anhand innovativer Systemtechnik soll die Prozesseffizienz und die Schweißnahtqualität beim Laserstrahlschweißen von Kupferwerkstoffen gesteigert werden. Hierzu wird im Rahmen des Forschungsprojektes ProLasKu von der TRUMPF Laser GmbH eine neuartige Strahlquelle entwickelt. Diese emittiert im grünen Wellenlängenbereich mit einer Ausgangsleistung von bis zu 1,5 kW. Um die Vorteile von grüner Laserstrahlung darzulegen, wurden am iwb Methoden zur Beurteilung der Effizienz und der Stabilität des Schweißprozesses entwickelt. Weiterlesen

Untersuchungen zum Einfluss der spanenden Bearbeitung und des Schwefelgehalts auf die Schwingfestigkeit des Vergütungsstahls 42CrMo4+QT

Abbildung 1: Prinzipskizze Autofrettage [nach Gre06] und Einlippentiefbohren

42CrMo4+QT gilt als einer der gebräuchlichsten Vergütungsstähle in der Automobil- und Zuliefererindustrie und ist weit verbreitet in industriellen Anwendungen. Anwendungsgebiete sind u.a. Komponenten des Antriebstrangs, wie Pleuel, Kurbelwellen oder Common-Rails für Einspritzsysteme. Da diese Komponenten großen dynamischen Belastungen ausgesetzt sind, spielt ihre Schwingfestigkeit eine entscheidende Rolle. Um stetig steigende Anforderungen an diese Bauteile zu erfüllen, kann neben der Verwendung höherfester Werkstoffe auch die Anpassung der Produktionsprozesse zu einer Steigerung der Schwingfestigkeit beitragen. Weiterlesen