Optimale Leistung eines Bearbeitungszentrums ist abhängig vom Wälzlager – Teil 1

Das richtige Wälzlager optimiert Produktivität und Leistung (Bild: The Timken Company)

Das richtige Wälzlager optimiert Produktivität und Leistung (Bild: The Timken Company)

Vertikale und horizontale Bearbeitungszentren sehen sich unterschiedlichsten Anforderungen ausgesetzt. Durch die Auswahl eines Lagers, das zur Erfüllung dieser Anforderungen konfiguriert ist, lassen sich sowohl die Produktivität als auch die Leistung verbessern.

Es ist noch gar nicht so lange her, dass ein typisches Werk für Automobilmotoren oder -getriebe zahlreiche Maschinen betrieb, von denen jede einem spezifischen und eng definierten Zweck diente. Diese Ansammlung von Einzweckmaschinen wurde in eine Transferstraße integriert, auf der ein unbearbeitetes Werkstück transportiert wurde, wobei jede Maschine einen eng definierten Satz von Fräs-, Bohr- oder Gewindebohrarbeiten ausführte – auch als Arbeitszyklen bezeichnet – die den Rohling in ein Fertigteil verwandelten. Die Spindellager in diesen Maschinen wurden für den jeweiligen spezifischen Arbeitszyklus optimiert. Weiterlesen

Selbstvalidierung von komplexen elektronischen Systemen durch Grey-Box-Modelle

© Fraunhofer IZM Hybride Modelle kombinieren die Vorteile von physikalischen und datenbasierten Modellen.

© Fraunhofer IZM
Hybride Modelle kombinieren die Vorteile von physikalischen und datenbasierten Modellen.

Mischt man schwarz und weiß, entsteht grau – und damit eine neuartige Methode, die es ermöglichen soll, dass sich komplexe elektronische Systeme selbst überwachen. Mit sogenannten Grey-Box-Modellen, an denen Forschende des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM arbeiten, können in Zukunft etwaige Verschleißerscheinungen oder Manipulationen in elektronischen Systemen frühzeitig erkannt werden, bevor es zu einem Ausfall kommt. Erstmals ausgearbeitet und getestet wird das neue Verfahren derzeit am Beispiel von sicherheitskritischen Anwendungen im Automobil- und Bahnbereich. Das Grundprinzip lässt sich aber auch auf viele weitere Einsatzgebiete übertragen. Weiterlesen

Intelligente und flexible 5G-Edge-Cloud-Architektur zur Regelung von Produktionsprozessen

© Fraunhofer IPT Das 5G Edge Computing Device (rechts) mit Vibrationssensor, integriert in einen BLISK-Fräsprozess zur adaptiven Regelung.

© Fraunhofer IPT
Das 5G Edge Computing Device (rechts) mit Vibrationssensor, integriert in einen BLISK-Fräsprozess zur adaptiven Regelung.

Smarte Sensoren, die kabellos am Bauteil angebracht werden, verbessern das Verständnis und die Kontrolle von Produktionsverfahren, sodass sich Prozesse flexibel überwachen und adaptiv regeln lassen. Was nach einer weit entfernten Zukunftsvision klingt, setzt das Fraunhofer-Institut für Produktionstechnologie IPT in Aachen bereits um: Gemeinsam mit sieben Industriepartnern haben die Forscherinnen und Forscher eine intelligente und flexible Prozessregelung entworfen, die große Datenmengen verarbeiten und mit 5G- und Cloudtechnologie nahezu verzögerungsfrei übertragen kann. Weiterlesen

Hochreflektierende Spiegel aus dem Tintenstrahldrucker

Farbige, gedruckte Spiegelschicht auf einer Folie. Der Tintenstrahldruck erlaubt die Strukturierung, sodass auch großflächige Logos gedruckt werden können (Foto: Qihao Jin, KIT; DOI: 10.1002/adma.202201348)

Farbige, gedruckte Spiegelschicht auf einer Folie. Der Tintenstrahldruck erlaubt die Strukturierung, sodass auch großflächige Logos gedruckt werden können (Foto: Qihao Jin, KIT; DOI: 10.1002/adma.202201348)

Forschende des KIT entwickeln ein Verfahren, mit dem erstmals Spiegel mit einer Reflektion von mehr als 99 Prozent in variabler Größe gedruckt werden können

Dielektrische Spiegel, auch Bragg-Spiegel genannt, können Licht fast vollständig reflektieren. Damit eignen sie sich für zahllose Anwendungen, etwa in Kamerasystemen, in der Mikroskopie, in der Medizintechnik oder in Sensorsystemen. Bisher mussten diese Spiegel aufwendig in teuren Vakuumapparaturen hergestellt werden. Forschende des Karlsruher Instituts für Technologie (KIT) haben nun erstmalig Bragg-Spiegel in hoher Qualität mit Tintenstrahldruckern gedruckt. Das Verfahren könnte den Weg zu einer digitalen Fertigung von maßgeschneiderten Spiegeln eröffnen. Weiterlesen

Effiziente Qualitätskontrolle mit Machine Learning

Die Palette der Use Cases für Machine Learning in der Industrie ist groß. Gerade im Bereich der Qualitätskontrolle kann man mithilfe von ML Zeit und Geld sparen und den Ausschuss reduzieren. Allerdings ist die Implementierung alles andere als trivial und klappt nicht von heute auf morgen. Genau deshalb gibt es dafür Experten wie AllCloud, die bei der Umsetzung helfen. Weiterlesen

Optische Materialcharakterisierung und Prozesskontrolle beim Laserschweißen von Kunststoffen

Im Bereich der Fügetechnologien von Kunststoffen, bietet das Laserdurchstrahlschweißen im Vergleich zu anderen Verfahren eine einzigartige Vielfalt an Prozessüberwachungsmethoden zur Sicherstellung der Schweißnahtqualität. Vorteilhaft wirkt sich dabei aus, dass die Einflussgrößen aus Prozess und Maschine nur sehr kleinen Streuungen unterliegen und überwiegend erfasst und geregelt werden. Treten größere Schwankungen in der Qualität des Schweißergebnisses auf, können sie zumeist auf die Fügeteile selbst zurückgeführt werden. Die Prozesseinflussgrößen sind dort vielfältig, allen voran spielen die Bauteiltoleranzen sowie die optischen Eigenschaften des Materials eine bedeutende Rolle. Letztere – besonders die Lasertransmission des lasertransparenten Fügepartners – werden wiederum von zahlreichen Faktoren beeinflusst. Hier sind, neben der Art des Materials, insbesondere die Vorprozesse (z. B. der Spritzguss) oder enthaltene Additive – wie Farbmittel und Glasfasern – zu nennen.

Bild 1: PICTOR Systeme zur Messung der Lasertransmission: links PICTOR Planar, Mitte PICTOR Radial, rechts PICTOR Radial als Integrationslösung (Quelle: Intego)

Bild 1: PICTOR Systeme zur Messung der Lasertransmission: links PICTOR Planar, Mitte PICTOR Radial, rechts PICTOR Radial als Integrationslösung (Quelle: Intego)

Weiterlesen

Neue Präzisionsmethode – Fluoreszenzmesstechnik zur Qualitätssicherung in der Produktion

© Fraunhofer / Piotr Banczerowski Chancen für die Produktion: Die Technologie ist nicht nur präzise, sondern auch inline-fähig.

© Fraunhofer / Piotr Banczerowski
Chancen für die Produktion: Die Technologie ist nicht nur präzise, sondern auch inline-fähig.

Von »qualitativ« zu »quantitativ« sind es nur ein paar Buchstaben – und doch ist der Weg mitunter weit. So auch bei der Fluoreszenzmesstechnik: Mit ihr waren bisher meist nur qualitative Untersuchungen möglich. Ein Forscherteam des Fraunhofer-Instituts für Physikalische Messtechnik IPM entlockt der Methode nun erstmals quantitative Messwerte mit hoher Ortsauflösung und wird dafür mit dem Joseph-von-Fraunhofer-Preis ausgezeichnet.

Bisher galten fluoreszenzbasierte Techniken eher als Schätzeisen denn als zuverlässige, quantitative Messverfahren: Schließlich braucht es nicht nur präzise Referenzen, um das Verfahren zu kalibrieren, sondern auch ein tiefes Verständnis der Effekte, die die Fluoreszenzstrahlung beeinflussen. »Wir konnten aus dem Schätzeisen eine robuste und extrem schnelle Präzisionsmessmethode entwickeln«, erläutert Dr. Albrecht Brandenburg vom Fraunhofer-Institut für Physikalische Messtechnik IPM. Weiterlesen

Mikrowellen-Aufschluss in nur 5 Minuten

Klarer Durchblick für klare Aufschlüsse

Mikrowellen-Aufschlüsse zur spektrometrischen Elementanalyse sind seit vielen Jahren Standard. Das neue Mikrowellen-Aufschlussgerät Blade setzt einen neuen Standard hinsichtlich Schnelligkeit, Einfachheit und Bedienerkomfort. Hinzu kommt die einzigartige Beobachtung der Aufschlussreaktion mit der eingebauten Kamera zur Optimierung des Aufschlusses. Die wesentlichen Unterschiede des neuen Mikrowellen-Druckaufschlussgeräts Blade zu herkömmlichen Mikrowellen-Aufschlussgeräten sind: Weiterlesen

Ein liegender Tropfen verrät die Oberflächenspannung – neue Messmethode im KRÜSS Portfolio

Analyse eines Constrained Sessile Drop in der ADVANCE Software

Analyse eines Constrained Sessile Drop in der ADVANCE Software

Constrained Sessile Drop für effiziente Reinheitsprüfungen von Kontaktwinkel-Testflüssigkeiten anhand der Oberflächenspannung sowie für deren Messung bei hohen Temperaturen

Messung der Oberflächenspannung (OFS) anhand eines einzelnen, liegenden Tropfens: Mit der Methode Constrained Sessile Drop (Constrained SD) erweitert KRÜSS das Portfolio der optischen Grenzflächenanalytik um eine vielseitige Methode. Schnelle Reinheitsprüfungen von Kontaktwinkel-Testflüssigkeiten und Analysen von Schmelzen bei hohen Temperaturen sind die Hauptanwendungsgebiete. Weiterlesen

Simulationsgestützte Auslegung eines Spritzgießwerkzeuges zur Herstellung von kunststoffgebundenen Dauermagneten auf Duroplast Basis

1. Einleitung

Die Anwendungsfelder von kunststoffgebundenen (ks.-geb.) Dauermagneten können aktuell primär den beiden Bereichen der Sensorik als Signalgeber und der Antriebstechnik zugeordnet werden. Im Bereich von Motorkonzepten kann unter anderem eine magnetische Anregung von Synchron- oder Gleichstrommaschinen durch den Einsatz von ks.-geb. Dauermagneten erfolgen, da mit Hilfe des Spritzgießprozesses eine hohe Geometriefreiheit ausgenutzt wird [1]. Hierdurch lassen sich bis zu 70 % der weltweiten Produktion von Elektromotoren mit Hilfe des neuen Antriebskonzeptes durch ks.-geb. Dauermagnete realisieren [2,3]. Die neuen Konzepte im Bereich von (A)synchronmaschinen ermöglichen durch die Ausnutzung der Geometriefreiheit eine Verbesserung der Leistung und des Wirkungsgrads, wodurch eine Miniaturisierung sowie eine deutliche Reduktion des Materialeinsatzes erfolgen kann. Aktuell kommen im Bereich von ks.-geb. Dauermagneten, die im Spritzguss gefertigt werden, vornehmlich Thermoplast basierte Matrixsysteme zum Einsatz. Durch den Einsatz von Duroplasten könnte die Medien- und Temperaturbeständigkeit deutlich erhöht werden, wodurch die Anwendungsbereiche von ks.-geb. Dauermagneten vor allem im Bereich der Antriebstechnik auch auf Pumpensysteme und die chemische Industrie erweitert werden könnte [4]. Die hohe Beständigkeit duroplastischer Werkstoffe beruht auf der Vernetzung der Molekularstruktur innerhalb des Duroplasten [5]. Zusätzlich weisen Duroplaste gerade im Bereich des Werkzeuges eine minimale Viskosität auf [6]. Dies kann für eine optimierte Orientierung von anisotropen Füllstoffen genutzt werden, um das magnetische Potential von hartmagnetischen Partikeln vollständig durch eine Ausrichtung zu nutzen und damit die magnetischen Eigenschaften im Bauteil zu erhöhen. Zusätzlich kann das geringe Kriech- und Setzverhalten von Duroplasten gegenüber Thermoplasten positiv bewertet werden [4]. Weiterlesen