Physiker entwickeln hauchdünne Supraleiter-Folie – neue Nano-Beschichtung auch für die Raumfahrt

Es ist eine neue Klasse von Supraleitern: Experimentalphysiker aus dem Forscherteam um Professor Uwe Hartmann von der Universität des Saarlandes haben einen dünnen Nano-Stoff entwickelt, der supraleitende Eigenschaften hat. Ab etwa minus 200 Grad transportiert er elektrischen Strom verlustfrei, lässt Magnete schweben und schirmt Magnetfelder ab. Das Besondere: Die Forscher haben dabei Fasern mit supraleitenden Nanodrähten zu einem Stoff verwebt, der hauchfein, biegsam und flexibel ist wie Frischhaltefolie. Dies ermöglicht neuartige Beschichtungen, etwa für Weltraum und Medizin. Die VolkswagenStiftung förderte die Forschung; aktuell unterstützt die Deutsche Forschungsgemeinschaft das Projekt.

Auf der Hannover Messe zeigten die Physiker vom 24. bis 28. April ihre Supraleiter-Folie und suchen Partner, mit denen sie diese für den praktischen Einsatz weiterentwickeln können: am saarländischen Forschungsstand (Halle 2, Stand B46). Weiterlesen

Ein Billionstel Gramm Schadstoff genügt: Ingenieure lassen Gas-Analysegeräte besser schnuppern

Mit den Methoden der Saarbrücker Messtechniker erschnüffeln transportable Gas-Chromatographen auch winzigste Spuren: Schon ein Billionstel Gramm eines Schadstoffes in einem Gas-Gemisch genügt den Sensorsystemen, die Professor Andreas Schütze mit seinem Team an der Universität des Saarlandes entwickelt. Die Forscher sind darauf spezialisiert, die künstlichen Sinnesorgane immer feinfühliger, genauer und empfindlicher schnuppern zu lassen. Jetzt verbessern die Ingenieure die Detektoren für Gas-Chromatographen mit ihrer Technik. Vor allem mobile Geräte können hiervon profitieren.

Ihr Verfahren zeigten die Ingenieure vom 24. bis 28. April auf der Hannover Messe am saarländischen Forschungsstand (Halle 2, Stand B46). Die Forscher suchen insbesondere Kontakt zu Herstellern von Gas-Chromatographen. Weiterlesen

Siebenmeilenstiefel für die Verzahnung

Bei der Herstellung hochgenauer Zahnräder geht es immer mehr um höhere Schnittgeschwindigkeiten. Die Werkzeugbeschichtung BALINIT®ALTENSA erlaubt hier deutliche Steigerungen. Foto: Oerlikon Balzers

Mit BALINIT ALTENSA machen Verzahnungswerkzeuge laut Oerlikon Balzers deutlich mehr Tempo: Die AlCrN-Schicht senkte die Fertigungszeit pro Zahnrad in der Serienproduktion von Automobilgetrieben um 20 bis 28 Prozent.

In der Verzahnungsindustrie müssen Hersteller am Standort Deutschland verstärkt auf niedrigere Produktionskosten hinarbeiten, um gegenüber asiatischen und osteuropäischen Anbietern wettbewerbsfähig zu bleiben. Dabei spielt die Schnittgeschwindigkeit eine entscheidende Rolle. Lässt sie sich signifikant erhöhen, verkürzen sich die Fertigungszeiten – und die Tür zu geringeren Kosten und mehr Produktivität öffnet sich. Moderne Verschleißschutzschichten können nicht nur dazu wesentlich beitragen. Sie ermöglichen zudem Trockenbearbeitung, steigern die Werkzeugstandzeit und senken dadurch die Produktionskosten je Bauteil. Weiterlesen

Wenn Industrieroboter heiß laufen – Dauer-Fitness-Check für Maschinen sagt frühzeitig Fehler voraus

Es behält den Zustand von Maschinen pausenlos im Auge, stellt Diagnosen und kündigt an, wann ein Ersatzteil ausgetauscht werden muss: Das Forscherteam von Andreas Schütze an der Universität des Saarlandes hat ein Früherkennungs-Programm für technische Anlagen entwickelt. Intelligente Sensoren sammeln permanent verschiedenste Messdaten aus dem Inneren der Geräte und vergleichen die Datenmuster unablässig mit normalen Werten. Weichen die Muster ab, informiert das System sofort, wann ein Schaden droht, und was dagegen zu tun ist. So können Ingenieure Wartungen besser planen und sind vor bösen Überraschungen und Produktionsausfällen sicher. Weiterlesen

Das perfekte Klebe-Doppel

Beim Einkleben des Tanks in der Endmontage führt der Facharbeiter den Tank mit Hilfe eines Manipulators an einen Drehtisch, reinigt ihn, bringt ihn in die richtige Position und übergibt ihn zur weiteren Bearbeitung an den LBR iiwa.

Zwei sensitive KUKA Leichtbauroboter LBR iiwa arbeiten Hand in Hand mit den Werkern bei Klebeverfahren der Firma Dürr

Die Dürr AG ist ein weltweit führender Maschinen- und Anlagenbauer mit Stammsitz im baden-württembergischen Bietigheim-Bissingen. In enger Zusammenarbeit mit den Kunden entwickelt Dürr mit rund 16.000 Mitarbeitern an 92 Standorten in 28 Ländern integrierte Gesamtkonzepte für hocheffiziente Fertigungsprozesse. Zirka 60 Prozent des Umsatzes entfallen auf das Geschäft mit Automobilherstellern und -zulieferern. Als Lieferant schlüsselfertiger Anlagen für automatisierte Klebeprozesse entwickelt Dürr für die Automobilindustrie Roboterzellen mit Mensch-Roboter-Kollaboration (MRK). Weiterlesen

Neues Forschungsprojekt zu 3D-gedruckten Federungssystemen

Foto (IHD): Federungssysteme im Druckprozess

Unter der Kurzbezeichnung „3D-FeSy“ startete am 1. Februar 2017 im IHD ein neues Forschungsprojekt zur Entwicklung eines integralen Federungssystems für Polstermöbel unter Verwendung des Fused-Filament-Fabrication-Ver fahrens.

Differenzierte Kundenwünsche hinsichtlich des Sitzkomforts führen zu einer Vielfalt an Konstruktionsvarianten bei der Möbelfertigung. Daraus resultieren für die Hersteller hohe Logistik- und Lageraufwendungen bei der Sicherung kundenangepasster Sitzpolsteraufbauten. Für individualisierte Produkte und die Herstellung kleiner Stückzahlen bieten sich 3D-Druck-Verfahren an. Weiterlesen

Maßgeschneiderte mechanische Eigenschaften von Werkzeugoberflächen durch drahtbasiertes Laserstrahllegieren

Autor: Konstantin Hofmann

Steigende Anforderungen an die Fahrzeugsicherheit bei gleichzeitig minimiertem Materialeinsatz zur Umsetzung des Leichtbaus bedingen den Einsatz von höchstfesten presshärtbaren Bor-Mangan-Stählen. Die beim Presshärten notwendigen Temperaturen zur Austenitisierung der Halbzeuge erfordern eine zusätzliche Aluminium/Silizium-Beschichtung, um diese gegen Verzunderung zu schützen. Derartige Beschichtungen neigen jedoch zur Anhaftung an temperierten Werkzeugoberflächen und erzeugen somit adhäsive Rückstände, die zu erhöhtem Verschleiß der Werkzeuge führen. Des Weiteren verursachen die beim Presshärten auftretenden Prozesskräfte abrasiven Verschleiß, der speziell in hochbeanspruchten Bereichen des Werkzeuges, wie dem Ziehringradius, zu einer reduzierten Werkzeugqualität führt. Zur Erhöhung der Verschleißbeständigkeit wird das Gefüge in einem selektiven Laserstrahllegierungsprozess lokal modifiziert. Entsprechend der auftretenden Belastungsarten ist eine individuelle Einstellung der mechanischen Eigenschaften durch eine entsprechende Wahl geeigneter Legierungselemente möglich. Weiterlesen

Erfolgreicher Geschäftsübergang

Zum Jahreswechsel 2016 wurde der Walzenbezugshersteller Nowack Gummiwalzen durch den süddeutschen Systemanbieter von Hochleistungswalzenbezügen und Walzenkomplettlösungen SchäferRolls in Renningen übernommen. Nowack ist als Walzenbezugshersteller vor allem im Bereich der technischen Industrie tätig und wird unter gleicher Firmierung und mit den derzeit 20 Mitarbeitern als selbständige Einheit innerhalb der SchäferRolls-Gruppe weitergeführt. Weiterlesen

Zeit- und ressourceneffiziente Charakterisierung des Ermüdungsverhaltens bei sehr hohen Lastspielzahlen mittels moderner Ultraschall-Schwingprüfsysteme

J. Tenkamp, S. Siddique, F. Walther

Fachgebiet Werkstoffprüftechnik (WPT), Technische Universität Dortmund, Baroper Str. 303, D-44227 Dortmund, www.wpt-info.de

Einleitung

Viele Bauteile des Maschinen- und Anlagenbaus werden im Betrieb schwingbeansprucht. Dabei müssen diese nicht selten 107 bis 109 oder gar 1010 Lastwechsel ertragen. War es früher Stand des Wissens, dass Werkstoffe nicht durch Ermüdung versagen, wenn die einwirkende Beanspruchung unterhalb der sog. „Dauerfestigkeit“ liegt, wurden mit neuen Methoden Ausfälle im Bereich sehr großer Lastspielzahlen (VHCF, Very High Cycle Fatigue) auch für Beanspruchungen unterhalb der „Dauerfestigkeit“ festgestellt. Dies führt zum Schluss, dass eine derartige „Grenze“ nicht existiert [1,2]. Weiterlesen

3D-Druckverfahren in der regenerativen Medizin

Stefan Reschke, Dr. Diana Freudendahl, Dr. Ramona Langner

3D-Druckverfahren, wegen des schichtweisen Materialaufbaus im Englischen überwiegend unter der Bezeichnung „Additive Manufacturing“ zusammengefasst, dienen zunehmend der kommerziellen Herstellung von kundenspezifisch maßangefertigten Bauteilen mit komplexen Geometrien, welche über herkömmliche Produktionsverfahren grundsätzlich nicht oder zumindest nicht in einem Stück gefertigt werden können. Hinzu kommt, dass einige 3D-Druckverfahren bei Raumtemperatur und normalen Umgebungsbedingung stabile räumliche Strukturen hoher Komplexität aufbauen können. Sie sind also prinzipiell dazu geeignet, mit lebender Materie wie z.B. Stammzellen des Patienten oder sehr empfindlichen biologischen Substanzen und Wirkstoffen, z.B. Kollagen oder sogenannte Wachstumsfaktoren, räumliche Strukturen wie weiche (z.B. Bindegewebe) und harte Gewebe (Knochen) oder auch Organe herzustellen. Ein weiterer extrem wertvoller Vorteil dieser Verfahren ist, dass mit ihnen direkt bei der Produktion des Bauteils Gradienten in Bezug auf Materialzusammensetzung und Porosität erzeugt werden können. Weiterlesen