Preiswerte Energiespeicher für das Elektroauto von morgen

© Fraunhofer IWS Dresden
So sehen die mit der neuen Trockenfilmtechnologie beschichteten Elektroden aus. Mit dem Verfahren des Fraunhofer IWS lassen sich Batterieelektroden ohne den Einsatz von giftigen Lösungsmitteln bereits im Pilotmaßstab herstellen.

Um Batterien künftig preisgünstiger und umweltschonender herstellen zu können, haben Forscherinnen und Forscher am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden ein neues Produktionsverfahren entwickelt. Dabei beschichten sie die Elektroden der Energiespeicherzellen mit einem trockenen Film statt mit flüssigen Chemikalien. Das spart Energiekosten und macht giftige Lösungsmittel in diesem Prozessschritt überflüssig. Ein finnisches Unternehmen erprobt die neue Fraunhofer-Technologie bereits erfolgreich in der Praxis. Weiterlesen

Effizienter Katalysator zur Wasserspaltung

Hybridmaterial aus mit Kohlenstoffnitrid umhüllten SnIP-Nanofasern Bild: Pawan Kumar / University of Alberta

Ein Forschungsteam der Technischen Universität München (TUM) hat im Rahmen einer internationalen Kooperation einen effizienten Wasserspaltungskatalysator entwickelt. Er besteht aus einer Doppelhelix-Halbleiterstruktur, umhüllt mit Kohlenstoffnitrid. Dieser Katalysator ist ideal um billig und nachhaltig Wasserstoff zu erzeugen. Weiterlesen

Carbonbeton – Schlank, leicht, umweltfreundlich

3D-Visualisierung der entworfenen integralen Überführungsbrücke mit Halbfertigteilen aus vorgespanntem Carbonbeton
© sbp

Einsturzgefahr, Sperrungen, notwendige Investitionen in Milliardenhöhe. Der größte Feind aller großen Brücken weltweit ist Korrosion. In Deutschland gibt es allein 40 000 stolze Fluss- und Autobahnbrücken aus Stahlbeton. Und sehr viele davon haben ihre beste Zeit hinter sich. Gebaut zwischen 1960 und 1985 müssen etwa die Hälfte von ihnen in naher Zukunft ersetzt werden. Der Grund: Durch Schäden, selbst feinste Risse, im Beton dringt Wasser ein und setzt über Jahrzehnte der Stahlbewehrung zu. Die Hoffnung auf Rettung richtet sich deshalb auf einen innovativen Verbundbaustoff, der den Brückenbau revolutionieren soll: Carbonbeton. Nun wurde die weltweit erste integrale vorgespannte Carbonbeton-Brücke zu Forschungszwecken an der TU Berlin aufgebaut. Weiterlesen

Bioinspirierte Unterwasserklebstoffe

Dr. Diana Freudendahl, Dr. Heike Brandt, Dr. Ramona Langner

Im Allgemeinen stehen aus industrieller Sicht Wasser und Feuchtigkeit noch häufig in Konflikt mit Klebeverbindungen, doch paradoxerweise treten in lebenden Organismen praktisch alle Adhäsionen in Gegenwart von Wasser auf. Effektive Unterwasserklebstoffe besitzen vielfältige Anwendungsmöglichkeiten; zum einen können sie in der Medizin zum Wundverschluss und zur Gewebsrekonstruktion eingesetzt werden. Zum anderen sind sie z. B. prädestiniert zum Verschluss von Lecks und Reparaturarbeiten sowie für das Anbringen von Sensoren oder anderen Bauteilen unter Wasser bzw. im feuchten Milieu. Die Grundlagenforschung auf diesem Gebiet führt zusätzlich zu einem guten Verständnis der Mechanismen von natürlichen, biologischen Unterwasserklebstoffen und ermöglicht so auch die Herstellung neuer nicht-toxischer Antifoulingbeschichtungen. Weiterlesen

Anwendung von Virtual Reality in der Intralogistik

Die Arbeitswelt verändert sich in der Logistik hinsichtlich der aus volatilen und individuellen Märkten resultierenden Anforderungen und im Kontext der Digitalisierung rasant. Unternehmen müssen neben der Implementierung neuer Technologien und Geschäftsmodelle auch ihre Mitarbeiter in die Digitalisierung einbinden. Diese Einbindung betrifft nicht nur die Mitarbeiter auf dem Shopfloor, sondern fängt im Sinne eines ganzheitlichen Ansatzes schon bei der Planung an. Nachfolgend soll anhand der Planung von Materialflusssystemen aufgezeigt werden, wie die unterschiedlichen Akteure von der Planung über die Konzeptgestaltung bis zur Qualifizierung am Arbeitsplatz mit eingebunden werden können.

Abbildung 1: Vergleichzwischen 2D-CAD Zeichnungen und 3D-Visualisierungen

Weiterlesen

Qualitätssicherung von CFK-Laminaten mit modernen Ultraschall-Rekonstruktionsverfahren

Abbildung 1: Beispiel einer fokussierten Wellenfront mit einem Phased-Array-Prüfkopf

Einleitung

Die weltweite Nachfrage nach kohlenstofffaserverstärkten Kunststoffen (CFK) wird, aktuellen Marktprognosen zur Folge, auch in den nächsten Jahren weiter deutlich ansteigen. Vor allem die hohen gewichtsspezifischen Festigkeits- und Steifigkeitseigenschaften dieser Materialien übertreffen die mechanischen Kennwerte vieler traditioneller Werkstoffe um ein Vielfaches. Deshalb sind CFK-Laminate besonders attraktiv für verschiedenste Leichtbauanwendungen in der Luft- und Raumfahrtindustrie, im Automobilbereich und zunehmend auch im Energiesektor. Weiterlesen

Prozessparallele Qualitätssicherung in der spanenden Fertigung

Abbildung 1: Beispiel des virtuell gefertigten digitalen Schattens mit virtuellen Macken auf der Oberfläche

Von Christian Brecher, Marian Wiesch, Stephan Neus, WZL der RWTH Aachen

Mit zunehmendem Digitalisierungsgrad fertigender Unternehmen wächst die verfügbare Datenbasis kontinuierlich. Die aggregierten Fertigungsdaten können, angereichert mit Domänen- bzw. Prozesswissen, zur Steigerung der Anlagenverfügbarkeit und Produktivität eingesetzt werden. Sie bieten darüber hinaus Potenziale für weitreichende Evaluationmethoden und können Einzug in die moderne Qualitätsüberwachung und -protokollierung halten. Weiterlesen

Legierungsentwicklung für die Additive Fertigung

Bild 1: Feine Lamellenstruktur einer mit LMD hergestellten eutektischen Legierung auf Al-Basis

Andreas Weisheit, Fraunhofer-Institut für Lasertechnik

Unter dem Begriff der Additiven Fertigung, auch als 3D Druck bezeichnet, werden heute zahlreiche Verfahren subsummiert. Für metallische Werkstoffe sind die laserbasierten Verfahren im Pulverbett (Laser Powder Bed Fusion, LPBF) und mit Pulver- oder Drahtzufuhrdüse (Laser Metal Deposition, LMD) die wichtigsten, die auch als Laser Additive Manufacturing (LAM) zusammengefasst werden. In beiden Verfahren wird der Werkstoff vollständig aufgeschmolzen und Schicht für Schicht zu einem Bauteil aufgebaut. Die werkzeuglose Fertigung bietet ein hohes Maß an Individualisierung und (fast) unbegrenzte Design-Möglichkeiten. LAM hat in den letzten zwei Jahrzehnten eine rasante Entwicklung erfahren. Am Anfang waren es nur Prototypen, die mit diesem Fertigungsverfahren hergestellt wurden. Rasch kam dann die Herstellung von Unikaten (z. B. Implantate) und Einzelteilen (z. B. Werkzeugeinsätze) hinzu. Heute bewegt sich das Verfahren in Richtung einer Serienfertigung bis zu mehreren Zehntausend Teilen im Jahr. In Forschung und Industrie wird derzeit intensiv an hierfür notwendigen Voraussetzungen wie der Erhöhung der Produktivität, der Qualitätssicherung und der Integration in Prozessketten gearbeitet. Weiterlesen

Datenanalyse & prädiktive Modellbildung zur Flexibilisierung der Aluminiumelektrolyse

Abbildung 1: Eine von insgesamt drei Elektrolysehallen bei der TRIMET Aluminium SE in Essen. Jede Halle beheimatet insgesamt 120 Elektrolyseöfen (© TRIMET Aluminium SE)

Im Zuge der Energiewende werden konventionelle Energieerzeugungsquellen zunehmend durch Erzeugungsanlagen ersetzt, die auf erneuerbare Energien basieren. Der Großteil der erneuerbaren Energieerzeugung besitzt eine starke Wetterabhängigkeit, was zu einer erheblichen Fluktuation in der Stromerzeugung führt. Eine Lösung für diese Problematik ist die Flexibilisierung der industriellen Nachfrage nach Strom. Weiterlesen

Mikroskopische Schutzhülle für bessere Speicher

2D-Modell von Ni-reichen Kern-Schale-Partikeln: Bild a) kristallographische Orientierung der einzelnen Körner in einem Kerne-Schale-Partikel Bild b) das für die Rechnung verwendete Netz Bilder c) bis f) berechnete Zug- und Druckspannungs-Verteilungen im geladenen Zustand der Batterie für normale (c,e) und Kern-Schale-Partikel mit verringerten Intensitätsmaxima am Rand (d,f) Copyright: Robert Mücke / Forschungszentrum Jülich

Lithium-Ionen-Akkus sind mit ihrer langen Lebensdauer und hohen Energiedichte anderen wieder aufladbaren Batteriesystemen weit überlegen. Dennoch sind sie für viele Anwendungen, etwa Elektroautos, noch immer unzureichend. Einer der Gründe dafür liegt im Kathodenmaterial der Akkus. Wissenschaftler aus Jülich und Südkorea forschen an einem Werkstoff, der die Batterien künftig leistungsfähiger machen könnte.

Die Batterie ist das Herzstück eines jeden Elektrofahrzeugs. Momentan kommen dabei fast ausschließlich Lithium-Ionen-Akkus zum Einsatz. Sie vertragen viele Ladezyklen und ihre Energiedichte, bzw. Entladekapazität, hat sich seit ihrer Einführung in den frühen neunziger Jahren mehr als verdoppelt. Trotzdem sind selbst moderne Lithium-Akkus noch immer unzureichend für E-Fahrzeuge, die eine breitere Verbraucherbasis ansprechen können: zum einen wegen der hohen Kosten, doch vor allem wegen der immer noch zu kurzen Reichweite pro Ladung. Weiterlesen