Blitzthermografie als zerstörungsfreies Prüfverfahren zur Materialprüfung am Beispiel von dünnen Schichten

Abbildung 1: Überblick einer Auswahl an ZfP-Verfahren gruppiert nach zugrunde liegendem physikalischem Prinzip.

Abbildung 1: Überblick einer Auswahl an ZfP-Verfahren gruppiert nach zugrunde liegendem physikalischem Prinzip.

Zerstörungsfreie Materialprüfung

Die Verwendung von verschiedenen Methoden der zerstörungsfreien Prüfung (ZfP) ist aus der Qualitätssicherung heute nicht mehr wegzudenken. Die Vorteile hierfür liegen klar auf der Hand: Bauteile können während des Betriebs untersucht werden und können auch nach der Untersuchung – im Falle der Bestätigung von guter Qualität und Fehlerfreiheit – noch verwendet werden. Theoretisch ist dadurch auch die Prüfung von bis zu 100% der Bauteile möglich. In der Praxis wird dies aber nur bei hoch sicherheitsrelevanten Teilen (z. B. in Turbinen) aufgrund des Aufwandes durchgeführt. Im Allgemeinen wird eher eine stichprobenartige Prüfung oder die Prozessqualifizierung in der Herstellung genutzt. Weiterlesen

Textile Energiespeicher

Dr. Ramona Langner, Dr. Heike Brandt, Dr. Diana Freudendahl

Das Forschungsfeld textiler Energiespeicher ist erst in den letzten zehn Jahren neu entstanden, aber in dieser Zeit bereits enorm gewachsen. Ziel ist es dabei, Garne oder Gewebe mit der Fähigkeit zur Speicherung elektrischer Energie zu versehen. Dies ist für verschiedene Anwendungen interessant, die wichtigste ist jedoch die Nutzung in sogenannten intelligenten Textilien. Dies können etwa Smartshirts sein, die die Vitalparameter ihres Trägers erfassen sowie überwachen (Biomonitoring) und vor allem für Telemedizin und Sport von Interesse sind. Insbesondere könnte hiervon die Versorgung älterer Menschen profitieren: Durch eine permanente Überwachung ihres Gesundheitszustandes mithilfe solcher Smartshirts könnten sie z. B. länger in ihrem eigenen Heim wohnen. Aber auch im Bereich der Unterhaltungselektronik könnten intelligente Textilien neue Möglichkeiten eröffnen, beispielsweise indem sich andere tragbare Geräte wie Smartphones über sie steuern und/oder mit Energie versorgen lassen. Weiterlesen

Leichte Wagenkasten für Schienenfahrzeuge durch Integration von deckschichtverschweisster Sandwichpanelen

Bild 1: Detailansicht: Übergang zwischen Rahmenstruktur (links) und Sandwichboden (rechts)

Bild 1: Detailansicht: Übergang zwischen Rahmenstruktur (links) und Sandwichboden (rechts)

Herausforderung Wagenkasten

In Personenzugwagen werden heute viel mehr Komfort- und Informationssysteme eingebaut als früher, die zulässige Achslast ist aber beschränkt. Die Trassenbenutzung wird künftig immer mehr gewichtsabhängig verrechnet, so dass Hersteller von Schienenfahrzeugen insgesamt noch stärker auf das Gewicht achten müssen. Dies erfordert innovative Leichtbaukonzepte, bei denen neben dem Einsatz leichter und hochfester Werkstoffe auch fortschrittliche Bauweisen notwendig sind. Zusammen mit dem Institut für Mechanische Systeme (IMES) an der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) haben der Sandwichelemente-Hersteller 3A Composites Mobility und das Fertigungstechnologieunternehmen Rapid Technic ein Forschungsprojekt zur Weiterentwicklung der Integrierten Sandwichtechnologie (ISTech) lanciert, um die Strukturanforderungen einer Zulassung im Eisenbahnbereich zu erfüllen. Weiterlesen

Vom Pulver zum additiv hergestellten Bauteil – Teil 2: Potenziale durch Pulvermischungen

Pulvermetallurgische Verarbeitung von Pulvermischungen

Pulvermischungen werden in der konventionellen Pulvermetallurgie (PM) beim Matrizenpressen von Formteilen standardmäßig eingesetzt. Beim herkömmlichen Pressen und Sintern von Eisen- und Stahlpulvern werden Legierungszuschläge mit einem gut pressbaren Grundpulver gemischt. Die Legierungszuschläge können als Elementarpulver oder sog. „Meisterlegierung“ zugesetzt werden. Meisterlegierungen enthalten die Legierungselemente in den gewünschten Verhältnissen und vermeiden so das Mischen von Vielkomponentenwerkstoffen. Die Partikelgröße der Zusätze ist abhängig von der Legierungsart. Nicht aufschmelzende Elemente werden in Form feiner Pulver zugemischt, um beim Sintern eine homogene Durchmischung mittels Festkörperdiffusion zu erreichen. Aufschmelzende Partikel können in gröberer Form zugemischt werden, da sich die Schmelze vor den Diffusionsprozessen gleichmäßig im Bauteil verteilt. Aus Pulvermischungen verschiedener Korngrößen und Dichten ergeben sich auch stets Entmischungsproblematiken. In der konventionellen Pulvermetallurgie wird daher zum Teil über ein vorgelagertes Diffusionsglühen feines Pulver an das Grundpulver angesintert oder es werden organische Bindemittel verwendet, um feines Pulver an das Grundpulver zu kleben. Organische Hilfsmittel werden nach dem Formgebungsprozess durch Sintern thermisch entfernt. [1] Weiterlesen

Hochpräzise Messung der physikalischen Eigenschaften von Flüssigkeiten mit piezoelektrischen MEMS Resonatoren

Abbildung 1: MEMS Sensor mit angepasstem Elektrodendesign, um spezielle mechanische Schwingungsmoden effizient anzuregen

Abbildung 1: MEMS Sensor mit angepasstem Elektrodendesign, um spezielle mechanische Schwingungsmoden effizient anzuregen.

Einleitung und Motivation

Flüssigkeiten spielen eine zentrale Rolle in nahezu jedem Aspekt unseres Lebens von Körperflüssigkeiten über Lebensmittel bis hin zu chemischen Prozessen und technischen Anwendungen. Die Kenntnis über die physikalischen Eigenschaften von Flüssigkeiten wie Viskosität und Dichte erlaubt vielfältige Rückschlüsse auf deren aktuellen Zustand. Weiterlesen

Verbesserung der Delaminations-, Impakt- sowie Schadenstolenanzeigenschaften von Hochleistungs-Faserverbundwerkstoffen durch eine dreidimensionale Verstärkung mittels z-Pins

Abbildung 1 Z-Pins zur 3D-Verstärkung von Faser-Kunststoff-Verbunden: v.l.n.r. mit kreisförmigem Querschnitt mit einem Durchmesser von 0,28 mm und 0,5 mm sowie mit definierter Oberflächen-Mikrostrukturierung (umlaufende Kerben) und mit rechteckförmiger Querschnittsfläche.

Abbildung 1 Z-Pins zur 3D-Verstärkung von Faser-Kunststoff-Verbunden: v.l.n.r. mit kreisförmigem Querschnitt mit einem Durchmesser von 0,28 mm und 0,5 mm sowie mit definierter Oberflächen-Mikrostrukturierung (umlaufende Kerben) und mit rechteckförmiger Querschnittsfläche.

Einleitung

Hochleistungs-Faserverbundwerkstoffe, wie sie heute verbreitet in Strukturkomponenten in der Luft- und Raumfahrt sowie zunehmend auch in Bereichen der Elektromobilität zum Einsatz kommen, bestehen typischerweise aus einer polymeren Matrix in Kombination mit verstärkenden Fasern. Speziell die kohlenstofffaserverstärkten Kunststoffe (CFK) mit Epoxidharzmatrix werden dort eingesetzt, wo ein hoher Leichtbaugrad zwingend erforderlich ist, um energie- und kosteneffiziente Systeme zu erreichen. Diese Werkstoffe besitzen, abhängig u.a. von der Kombination von Matrix und Faserverstärkung sowie der Anordnung und Ausrichtung der verstärkenden Fasern, hervorragende mechanische Eigenschaften kombiniert mit einem geringen Gewicht. Diese Eigenschaften zeigen sich in der Laminatebene, in der die lasttragenden Fasermaterialien ausgerichtet sind. Weiterlesen

Anwendungsorientierte Materialkennwertermittlung für Zerspansimulationen auf Basis digitaler Bildkorrelationsverfahren

Möglichkeiten der Zerspansimulation

Mit fortschreitender Digitalisierung in der Produktionstechnologie gewinnt auch die Zerspansimulation bei der Entwicklung von Präzisionswerkzeugen zunehmend an Bedeutung. Die überwiegend auf der Finite Elemente Methode (FEM) basierenden Ansätze erlauben es, komplexe Geometrievarianten mit wenig Aufwand im frühen Entwicklungsstadium zu simulieren. Die Ergebnisse ermöglichen eine Beurteilung hinsichtlich der Spanbildung sowie der thermomechanischen Belastungen an der Schneidkante und dem Werkzeugkörper. Der Simulationsein­satz bietet Einsparpotenziale in der Entwicklung, da vielversprechende Designs frühzeitig identifiziert und die Anzahl realer Prototypen und Maschinentests verringert werden können. Abb. 1 stellt exemplarisch die mechanische Belastung eines Kugelfräswerkzeugs durch Zugspannungsanteile am Übergang der Schneide zum Werkzeugkörper bei unterschiedlichen Schnittbedingungen gegenüber.

Abb. 1: Mechanische Belastung (Max. Hauptnormalspannung) eines Werkzeugs bei unterschiedlichen Schnittgeschwindigkeiten, berechnet mit dem kommerziellen System AdvantEdge v7.7 (Third Wave Systems, Inc. USA)

Abb. 1: Mechanische Belastung (Max. Hauptnormalspannung) eines Werkzeugs bei unterschiedlichen Schnittgeschwindigkeiten, berechnet mit dem kommerziellen System AdvantEdge v7.7 (Third Wave Systems, Inc. USA)

Weiterlesen

MXene

Dr. Heike Brandt, Dr. Ramona Langner, Dr. Diana Freudendahl

Mit der Entdeckung des Graphens im Jahr 2004 haben zweidimensionale (2D) Materialien wie MXene aufgrund ihrer außergewöhnlichen mechanischen, elektronischen, optischen sowie chemischen Eigenschaften und den damit verbundenen Anwendungsmöglichkeiten ein wachsendes Interesse erzeugt.

Im Gegensatz zum Graphen, bei dem die Abtrennung der benötigten atomlagen-dünnen Schichten ohne viel Kraftaufwand durch mechanische Trennung möglich ist, ist bei MXenen eine chemische Trennung erforderlich. Als Ausgangsmaterial für MX­ene dienen MAX-Phasen, deren Schichtstrukturen aus Übergangsmetallen (M) bestehen, die von Kohlenstoff oder Stickstoff (X) koordiniert werden, und einem dazwischenliegenden Element der 3. oder 4. Hauptgruppe (A). Für MXene werden daher Ätzverfahren mit Fluss- oder Salzsäure in Kombination mit Fluoridsalzen eingesetzt, um die A-Schichten selektiv zu lösen und die MXene zu isolieren. Weiterlesen

Wärmeleitende Kunststoffe

Dr. Diana Freudendahl, Dr. Heike Brandt, Dr. Ramona Langner

Kunststoffe begleiten uns praktisch überall durch den Alltag, was ihrer ausgesprochenen Vielseitigkeit zu verdanken ist. Eine sehr prägnante Eigenschaft von Kunststoffen, die häufig auch bewusst eingesetzt wird, ist ihre gute thermische Isolation (die Wärmeleitfähigkeit liegt allgemein im Bereich 0,1 – 0,6 W/mK). In einer zunehmend digitalisierten Welt kann sich dies aber auch nachteilig auswirken, z. B. bei der Weiterentwicklung von flexibler organischer Elektronik oder der weiteren Miniaturisierung von Systemen. Wärmeleitfähige Polymere stellen daher eine sinnvolle Ergänzung im Repertoire der Kunststofftechnik dar. Neben ihrem vielseitigen Einsatz in elektronischen Komponenten könnten sie beispielsweise auch als Wärmetauscher, für thermoregulierende Textilien (stabil > 200 °C) oder im Bereich der Energieindustrie eingesetzt werden. Dabei können derartige Kunststoffe bedarfsgerecht in ihren Eigenschaften zur elektrischen Isolierung oder Leitung verändert und damit optimiert werden. Um eine solche Optimierung der Wärmeleitung in Polymeren zu ermöglichen ist ein gutes Verständnis der an der Wärmeleitung beteiligten Mechanismen unabdingbar. Weiterlesen

Lebensdauer laufender Drahtseile – Einflüsse aus Festigkeit und Verdichtung

Einleitung

Laufende Spezialdrahtseile für verschiedenste Anwendungen, beispielsweise im Kran-, Aufzug-, Bergbaubereich, sind in unterschiedlichen Drahtfestigkeiten verfügbar. Zusammen mit dem jeweiligen Seilaufbau und dem sich ergebenden metallischen Querschnitt bestimmen sie maßgeblich die Bruchkraft eines Drahtseiles. Diese ist gleichzeitig Basis für aktuelle normative Nachweise von Drahtseilen in Seiltrieben. Bei Berücksichtigung weiterer Seiltriebkomponenten ist es vielmals wirtschaftlicher, bei der Auslegung kleine Seildurchmesser und hohe Bruchkräfte auszuwählen. Dies führt häufiger zur Verwendung hoher Drahtfestigkeiten sowie weiter gesteigerter Bruchkraft durch den Einsatz verdichteter Seilkonstruktionen. Diese Verdichtung kann einerseits durch die sog. Litzenverdichtung vor der Verseilung und andererseits durch Hammerverdichtung des fertigen Drahtseiles realisiert werden. Hinsichtlich der Lebensdauer der Seile müssen jedoch hochfeste Drahtseile nicht zwangsläufig vorteilhaft sein. Durch eine Vielzahl von heutigen und auch früheren Versuchen sowie aufgrund von Erfahrungsberichten aus der Praxis, ist ein Trend festzustellen, dass höhere Festigkeiten und Verdichtungsgrade nicht zu einer längeren Lebensdauer führen. Aktuelle Untersuchungen innerhalb einer umfangreichen Versuchsreihe an der TU Dresden werden unter diesem Gesichtspunkt durchgeführt und sollen einen Beitrag leisten, die Zusammenhänge zwischen Drahtfestigkeit, Verdichtung und Lebensdauer besser in den vorhandenen Methoden zur Abschätzung der Betriebs- und Lebensdauer zu berücksichtigen. Die Betriebsdauer steht in der Seiltechnik für das Erreichen bestimmter Ablegekriterien und die Lebensdauer für das komplette Seilversagen. Für deren rechnerische Abschätzung in Seiltrieben stehen für Hersteller, Betreiber sowie wissenschaftliche Betrachtungen zwei Methoden zur Verfügung – die Methode nach Feyrer (Stuttgart) [Fey00] und die nach Jehmlich/Steinbach (Leipzig) [Jeh85], [Ste04]. Beide Herangehensweisen liefern für den durch Versuche abgedeckten Parameterbereich vergleichbare Ergebnisse. Schwerpunkt der hier vorgestellten Arbeiten ist die Weiterentwicklung der Methode Leipzig in Hinblick auf moderne Seilkonstruktionen, bei denen hohe Drahtfestigkeiten und die genannten Verdichtungsverfahren zum Einsatz kommen. Im Widerspruch dazu liefert die rechnerische Abschätzung mit den beiden genannten Methoden hingegen bei höheren Festigkeiten längere Lebensdauern. Neben einem umfangreichen Versuchsprogramm von Dauerbiegeversuchen sind auch weiterführende Untersuchungen hinsichtlich der Seildrähte Bestandteil der Betrachtungen. Derzeit liegen Ergebnisse von Dauer- und Umlaufbiegeversuchen sowie werkstoffanalytische Erkenntnisse vor. Weiterlesen